10 10 1 0
 B.Tech-VIEP CIVIL ENGINEERING
 Term-End Examination
 June, 2012
 BICE-025 : HYDRAULICS AND HYDRAULIC MACHINES

Time : 3 Hours

Maximum Marks : 70
Note : (i) Answer to be written in English only.
(ii) Answer any seven questions.
(iii) Non-programmable calculator allowed.

1. (a) Give difference between open channel flow 4 and pipe flow.
(b) Discuss Manning formula for discharge 6 through open channel. Also what are the influencing factors of Manning's ' n ' ?
2. A trapezoidal channel has side slop $1 \frac{1}{2}: 3$ i.e. 10 (vertical ; Horizontal). It is discharging water at the rate of 20 cumec with a bed slope 1 in 2000. Design the channel for most efficient section. Use Manning's formula. Take $\mathrm{N}=0.01$.
3. Show that for a wide rectangular channel the
critical depth is given by $Y_{c}=\left[q^{2} / g\right]^{1 / 3}$, when q is the discharge per unit width of the channel. Also prove that critical depth is equal to one and a half times minimum specific energy.
4. A rectangular channel 6 m wide discharges 1440 litre of water into a 6 m wide apron, with no slope, with a mean velocity of $6 \mathrm{~m} / \mathrm{s}$. What is the height of the jump? How much energy is absorbed in the jump?
5. Define Hydraulic jump? Derive formula of loss of Energy due to hydraulic jump for non uniform stream flow.
6. (a) Discuss the condition which may lead to the $5+5$ formation of surge waves in open channel.
(b) Write brief descriptions of streaming flow, critical flow and shooting flow in open channel.

7. The over all efficiency of a Pelton wheel is 86% when the power developed is 500 KW under a heed of 80 m .
 If the co-efficient of velocity for the nozzle is 0.97 . Find the diameter of the nozzle.

8. Obtain an expression for the hydraulic efficiency 10 for a Francis Turbine having velocity of flow through runner as constant, and having radial discharge at outlet. Guide blade angle is α and runner vane angle is θ.
9. Write short notes on : $5 \times 2=10$
(a) Different Efficiencies of Impulse Turbine.
(b) Derive conditions of most efficient channel section of Rectangular.
