## BET-022 : STRENGTH OF MATERIALS

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions from the remaining. Assume suitable data wherever necessary and mention it clearly. Use of calculator is permitted.

1. Choose the correct answer from the given alternatives:
(a) For an isotropic, homogeneous and elastic material obeying Hooke's law, number of independent elastic constants is
(i) 2
(ii) 3
(iii) 9
(iv) 1
(b) The sum of normal stresses is
(i) constant
(ii) variable
(iii) dependent on the planes
(iv) none of the above
(c) The ratio of width to depth of the strongest beam that can be cut out of a cylindrical log of wood is
(i) $1 / 2$
(ii) $1 / \sqrt{2}$
(iii) $1 / 3$
(iv) $2 / 3$
(d) If the length of a simply supported beam carrying a concentrated load at the centre is doubled, the deflection at the centre will become
(i) two times
(ii) four times
(iii) eight times
(iv) sixteen times
(e) If a circular shaft is subjected to a torque $T$ and bending moment $M$, the ratio of maximum bending stress and maximum shear stress is
(i) $\frac{2 M}{T}$
(ii) $\frac{M}{2 T}$
(iii) $\frac{\mathrm{M}}{\mathrm{T}}$
(iv) $\frac{2 \mathrm{~T}}{\mathrm{M}}$
(f) For circular column having its ends hinged, the slenderness ratio is 160 . The $l / d$ ratio of the column is
(i) 80
(ii) 57
(iii) 40
(iv) 20
(g) The ratio of torsional moments of resistance of a solid circular shaft of diameter $D$ and a hollow shaft having external diameter ' D ' and internal diameter ' d ' is given by
(i) $\frac{D^{4}}{D^{4}-d^{4}}$
(ii) $\frac{D^{4}-d^{4}}{D^{4}}$
(iii) $\frac{D^{3}}{D^{3}-d^{3}}$
(iv) $\frac{D^{3}-d^{3}}{D^{3}}$
2. A reinforced concrete (R.C.C.) column of a square14 cross section, $500 \times 500 \mathrm{~mm}$, is reinforced with 4 number of 25 mm dia. mild steel bars. The column is carrying a load of 200 tonnes. Find the stresses in the concrete and steel bars.
take E for steel $=21 \mathrm{kN} / \mathrm{mm}^{2}$
and $E$ for concrete $=1.4 \mathrm{kN} / \mathrm{mm}^{2}$
3. A point in a mass of material is subjected to a 14 tensile stress of $60 \mathrm{~N} / \mathrm{mm}^{2}$ and a compressive .stress of $40 \mathrm{~N} / \mathrm{mm}^{2}$, acting on two mutually perpendicular planes, with a shear stress of $10 \mathrm{~N} / \mathrm{mm}^{2}$ on these planes. Determine the principal stresses. Also find out the maximum shear stress.
4. A cantilever 1.5 m long is loaded with a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ run over a length of 1.25 m from the free end. It also carries a point load of 3 kN at a distance of 0.25 m from the free end. Draw the S.F. and B.N. diagrams of the cantilever.
5. A beam of rectangular section 100 mm wide and 240 mm deep is subjected to a bending moment of $76.8 \mathrm{kN}-\mathrm{m}$ and shear force of 96 kN . Find the principal stress at 0 (zero), 40, 80 and 120 mm above neutral axis.
6. A cantilever 120 mm wide and 200 mm deep is 2.5 metres long. What uniformly distributed load should the beam carry to produce a deflection of 5 mm at the free end?
Take $\mathrm{E}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
7. Find the maximum torque, that can be applied safely to a shaft of 300 mm diameter. The permissible angle of twist is 1.0 degree in a length of 8.0 m , and the shear stress is not to exceed 40 $\mathrm{N} / \mathrm{mm}^{2}$. Take $\mathrm{C}=84.4 \mathrm{kN} / \mathrm{mm}^{2}$.
8. Find the Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm thick. Take length of the column as 2.3 m which is hinged at its both ends. Take $\mathrm{E}=205 \mathrm{KN} / \mathrm{mm}^{2}$.
