Diploma in Civil Engineering / Diploma in Electrical and Mechanical Engineering
 DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI
 Term-End Examination
 June, 2012

BET-021 : MATHEMATICS-II
Time : $\mathbf{2}$ hours
Maximum Marks: 70
Note: Question No. 1 is compulsory. Attempt any four questions out of the remaining questions. Use of calculator is permitted.

1. (a) If $\mathrm{A}=\left(\begin{array}{cc}2 & -2 \\ -3 & 1\end{array}\right)$
$7 \times 2=14$

Find $A+I$ where I is a unit matric of order 2.
(b) A particle moves along a straight line. At any time t, the distance S travelled by the particle is given by $S=32 t^{2}+9$. Find the velocity at the time $t=2$
(c) The parametric equation of a function is $x=\mathrm{a} \cos \mathrm{t}, y=\mathrm{a} \sin \mathrm{t}, 0 \leq+\leq \pi$

Find $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$.
(d) Evaluate $\int \frac{d x}{(x+2)^{4}}$.
(e) $\int_{0}^{\frac{\pi}{4}} \operatorname{Sec}^{2} x \mathrm{~d} x$
(f) Find the modulus and principal argument of $\sqrt{3}+i$
(g) Prove that $f(x)=x^{2}$ is a strictly decreasing function in $I=(-\alpha, o)$
(h) Find the equation of the normal line to the curve $x^{2}+y^{2}=16$ at the point $\mathrm{P}(4,0)$
(i) Can Rolle's theorem be applied to the function $f(x)=x^{2}+4$ on $[-2,2]$
Find ' C^{\prime} in case it can be applied.
(j) The number of hours spent by a School boy on different activities in a working day is given below, present this information in the form of a Pie Chart.

Activity	\# of hours spent
Sleep	8
School	8
Home work	6
Other	2
Total	24

2. (a) Using properties of determinants, prove that

$$
\left[\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right]=(5 x+4)(4-x)^{3} \quad 2 \times 7=\mathbf{1 4}
$$

(b) Let $\mathrm{A}=\left(\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right), \mathrm{B}=\left(\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right)$ Find $(\mathrm{AB})^{-1}$
3. (a) Show that $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist. $2 \times 7=14$
(b) If $f(x)=\left\{\begin{array}{c}\frac{\operatorname{Sin} 2 x}{\operatorname{Sin} 3 x}, \\ 2, x=0\end{array}\right.$

Find whether the function $f(x)$ is continuous at $x=0$
4. (a) Find $\frac{d y}{d x}$, if $x^{2}+y^{2}+2 y=15$
(b) Find $\frac{d y}{d x}$ if $y=x^{\mathrm{Sin}-1} x$
(c) Express $\frac{1+2 i}{1-3 i}$ in the form $\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
5. (a) Evaluate $\mathrm{I}_{1}=\int \frac{2 x+5}{x^{2}-x-2} d x \quad 2 \times 7=14$
(b) and $\mathrm{I}_{2}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
6. The following table gives the weekly $2 \times 7=14$
(a) consumption of electricity of 50 families.

Find the mean and median weekly consumption :

Weekly consumption	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
\# of Families	6	12	18	3	1

(b) The marks obtained by 20 students in a test were $13,17,11,5,18,16,11,14,13,12,18$, $11,9,6,8,17,21,22,7,6$, find the mean marks per student and the mean marks per student when the marks of each student are doubled.
7. (a) The function $f(x)=x^{4}-62 x^{2}+\mathrm{a} x+9$ attains a maximum value on the interval $[0,2]$. Find the value of a. $2 \times 7=14$
(b) Find the intervals in which the function $f(x)=2 x^{3}+9 x^{2}+12 x+20$ is increasing or decreasing.

