Term-End Examination
June, 2012

BET-011 : MATHEMATICS-I

Time : $\mathbf{2}$ Hours
Maximum Marks : 70

Note: Question No. 1 is compulsory. Attempt any four more questions out of the remaining questions. Use of calculator is permitted.

1. Answer any seven of the following : $2 \times 7=14$
(a) Express $53 \sqrt{4}$ as a pure surd.
(b) Evaluate $\log _{81} 27$
(c) Without solving, discuss the nature of the roots of the equation $3 x^{2}+5 x+7=0$
(d) Which term of the A.P :

21, 42, 63, 84, \qquad is 420 ?
(e) Find the $12^{\text {th }}$ term of the G.P
$2,-6,18,-54$, \qquad .
(f) What is the meaning of the following box in a flow chart?

(g) Prove that

$$
\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}
$$

(h) For the parabola $x^{2}=4 a y, a>0$. Find the equation of the directrix and the co-ordinates of its focus.
(i) If $\vec{A}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{B}=2 \vec{i}+4 \vec{j}+5 \vec{k}$ find the projection of \vec{B} on \vec{A}.
(j) Find the equation of a line passing through $(4,3)$ and slope 2.
2. (a) Without using tables, find the value of 4, 4, 6 $\cot 12^{\circ} \cot 38^{\circ} \cot 52^{\circ} \cot 60^{\circ} \cot 78^{\circ}$
(b) Prove that $\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\sec \theta+1}{\sec \theta-1}$
(c) There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. P and Q are points directly opposite to each other on the two banks and in line with the tree. If the agles of elevation of the top of the tree from P and Q are respectively 30° and 45°, find the height of the tree.
3. (a) If the first term of a G.P excceds the second $5,4,5$ term by 2 and the sum of infinite term is 50 , find the G.P.
(b) Find the middle term in the expansion of

$$
\left(3 x-\frac{x^{3}}{6}\right)^{7}
$$

(c) If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}, y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
4. (a) Find the equation of a line which has $x 5,4,5$ intercept as -3 and is perpendicular to the line $3 x+5 y=4$.
(b) Find the equation of a circle which passes through the two points $(1,1),(2,2)$ and whose radius is 1 . Show that there are two such circles.
(c) Find the point at which the join of $(2,0)$ and $(-3,5)$ is divided in the ratio of $2: 3$ internally.
5. (a) Find the vertex, focus and directrix of the $\mathbf{5 , 4 , 5}$ parabola $y^{2}=4 x+4 y$.
(b) Find the equation of an ellipse when focus is (1,0), directrix is $x+y+1=0$ and eccentricity is $\frac{1}{\sqrt{2}}$.
(c) Solve the triangle ABC given $\mathrm{a}=20 \mathrm{~cm}$, $\mathrm{b}=30 \mathrm{~cm}, \mathrm{c}=21 \mathrm{~cm}$.
6. (a) If the vertices of a triangle are the points. $5,4,5$

$$
\vec{i}-\vec{j}+2 \vec{k}, 2 \vec{i}+3 \vec{j}+4 \vec{k}, 3 \vec{i}+3 \vec{j}+4 \vec{k}
$$

Find the length of the sides and the measure of angles of the triangle.
(b) Show that the vectors $A=2 \vec{i}-3 \vec{j}-\vec{k}$
and $B=-6 \vec{i}+9 \vec{j}+3 \vec{k}$ are parallel
(c) The point of application of a force $\mathrm{F}(5,10,15)$ is displaced from the point A $(1,0,3)$ to the point $(3,-1,-6)$. Find the work done by the force.

