Diploma in Civil Engineering

Term-End Examination June, 2012

BCE-045 : CONSTRUCTION DRAWING

Time : 2	hours					,	N	laximum	Marks	: 70
Note :	Part	'A'	is to	be	attemp	oted	on	answer	script	and
	Part '	B' of	n dra	win	g sheet.	Use	e of	calculato	r is allo	wed.

PART-A

Attempt any five questions from the following :

- Write short notes on abbreviations, illustrating at 7 least 7 abbreviations.
- 2. Explain the term

02605

- (a) Safe bearing capacity
- (b) Allowable bearing capacity
- Describe different types of continuous lines with 7 their applications, thickness and spacing in drawings.
- Draw a neat sketch of an arch and show elements 7 and Technical Terms.

BCE-045

- 5. Discuss architectural aspects of a staircase.
- 6. Define false ceiling and also sketch a wooden 2+5 frame false ceiling.
- Show by the line diagram the various members 7 of a King post and Queen post wooden trusses and mention upto what span each one can be used.
- How depth of foundation, width of foundation 7 and thickness of footings are designed ?

Attempt Q.NO.9 which is *compulsory* and attempt *any one* question from remaining. Assume suitable scale and mention

9. Draw the sectional elevation of a strip footing for 10 an external concrete wall of thickness 300 mm. The footing is provided at a depth of 1.5 m below the ground level. Plinth level is 0.5 m above GL. Design datas are as under :

Width of footing	= 2.0 m
Overall depth of footing	= 450 mm
Depth of footing at the edges	= 175 mm
Tensile reinf.	= 12_{φ} HYSD bars@120 c/c
Dist. reinf.	= 10 ₀ HYSD bars@200 c/c

10. The size of an office floor is 4.50×5.50 m effective. The floor is designed as a two way reinf. RCC Slab simply supported on all it's four edges with corners presented from lifting up. The design data are as under overall depth of slab = 150 mm Reinf. along short span = 10 ϕ HYSD@250 c/c Reinf. along longer span = 10 ϕ HYSD@300 c/c Prepare the structural working drawing for the floor in the following manner.

(a)	A section of floor along short span	8
(b)	A section of floor along long span	8
(c)	A plan of the floor showing reinf. in plan	9
	for torsion at the corners.	

BCE-045

- (a) A T-beam roof is provided over a hall of a 10 office building. Draw the longitudinal and cross sections of the beam with following datas :
 - Effective span of the beam = 4.75m
 - Overall depth of the beam = 350 mm
 - Width of the beam = 230 m
 - Depth of the flange of T-beam = 120 mm
 - Tension Reinf. = 4 Nos -20 φ HYSD Shear Reinf = 8 φ HYSD 2 legged stirrups @ 150 c/c -5 Nos at each end and @ 225 c/c in remaining part.
 - (b) A doubled leaf fully glazed wooden window of size 1.20 x 1.50 m is provided in the study room of a house.
 - (i) Draw the elevation of the window
 - (ii) Draw the sectional plan of the 5 window.