# Diploma in Civil Engineering 

Term-End Examination<br>June, 2012

## BCEE-061 : PRESTRESSED CONCRETE

## Time : $\mathbf{2}$ Hours <br> Maximum Marks : 70

Note: Attempt any five questions, including question No. 1 which is compulsory. Use of calculator is allowed. Assume any data required suitably.

1. Choose the most appropriate answer from the options given in each case.
$2 \times 7=14$
(a) Stress due to eccentric prestressing only, at an extreme fibre of a prestressed beam of cross sectional area A, may be given as :
(i) $\frac{\mathrm{P}}{\mathrm{A}} \pm \frac{\mathrm{I}}{\mathrm{Pey}}$
(ii) $\frac{\mathrm{A}}{\mathrm{P}} \pm \frac{\mathrm{Pey}}{\mathrm{I}}$
(iii) $\frac{\mathrm{P}}{\mathrm{A}^{2}} \pm \frac{\mathrm{P}^{2} \mathrm{ey}^{3}}{12 \mathrm{I}}$
(iv) $\frac{\mathrm{P}}{\mathrm{A}} \pm \frac{\mathrm{Pey}}{\mathrm{I}}$
(b) The word 'Dorland' is associated with :
(i) an anchorage system
(ii) a split cone assembly
(iii) tendons
(iv) a clip
(c) A bearing plate below an anchorage :
(i) Increases stress intensity in concrete
(ii) distributes the force evenly
(iii) is unsafe
(iv) is desired so that tendons do not break.
(d) The Lee McCall system uses:
(i) wedges
(ii) nuts and threaded bars
(iii) split cones
(iv) Steel wedge and plates.
(e) Splices are used for:
(i) holding tendons with correct profile
(ii) joining tendons
(iii) positioning anchorages
(iv) stretching tendons.
(f) Modulus of elasticity of concrete may be given as :
(i) $5000\left(\mathrm{f}_{\mathrm{ck}}\right)^{1 / 3}$
(ii) $5700\left(\mathrm{f}_{\mathrm{ck}}\right)^{1 / 3}$
(iii) $5700\left(\mathrm{f}_{\mathrm{ck}}\right)^{1 / 2}$
(iv) $5000\left(\mathrm{f}_{\mathrm{ck}}\right)^{1 / 2}$
(g) Value of creep coefficient for concrete :
(i) increases with age at loading
(ii) decreases with age at loading
(iii) remains constant and does not depend on age at loading
(iv) depends on type of anchorage system used in prestressed concrete.
2. (a) Describe the concept of load balancing briefly.
(b) Explain the utility of Hoyer's long line 7 system of prestressing with a neat sketch.
3. A concrete beam $150 \mathrm{~mm} \times 300 \mathrm{~mm}$ (depth) is $\mathbf{1 4}$ pre - tensioned by 7 wires of 7 mm diameter at an initial stress of $1000 \mathrm{~N} / \mathrm{mm}^{2}$. All the tendon wires have an eccentricity of 50 mm .
Find loss of prestress due to :
(a) Elastic shortening
(b) Creep of concrete
(c) Shrinkage of concrete and
(d) Relaxation of steel

Use the following data.
$\mathrm{E}_{\mathrm{S}}=200 \mathrm{kN} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{c}}=36050 \mathrm{~N} / \mathrm{mm}^{2}$
Creep coefficient $=1.6$
Shrinkage strain $=3 \times 10^{-4}$
Relaxation in steel $=8 \%$
4. (a) Write any three advantages and 7 applications, each for prestressed concrete.
(b) Discuss the concept of pressure line briefly. 7
5. (a) Explain the loss of prestress due to friction 7 in post - tensioned concrete members.
(b) Compute stresses at midspan section in 7 bottom fibres in a simply supported pre-stressed concrete beam with a rectangular cross section 250 mm wide and 350 mm deep span of beam is 5 m . Consider self load of the beam and an imposed load of $5 \mathrm{kN} / \mathrm{m}$ over the entire span. A prestressing force of 300 kN is applied concentrically. Density of concrete may be taken as $25 \mathrm{kN} / \mathrm{m}^{3}$.
6. (a) Discuss secondary stresses due to tendon 7 curvature.
(b) Make a comparison of pre and 7 post - tensioning in brief.
7. Write short notes on any two of the following:
(a) Prestressed concrete pipes
$7 \times 2=14$
(b) Chemical prestressing
(c) loss of prestress due to slip of anchorage.

