BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

June, 2012
BME-029 : ROBOTICS
Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Answer any seven questions.
All questions carry equal marks.

1. (a) Explain the relationship of robotics with $\mathbf{5 + 5}$ industrial automation and illustrate the same with a suitable example.
(b) What are the advantages of using robots in industry?
2. (a) Explain the use of inverse kinematics in $\mathbf{5 + 5}$ robotic application.
(b) Discuss the Lagrange-Euler formulation for a robot arm.
3. (a) Describe Homogenous Transformation 5+5 Matrix using an example.
(b) Explain the advantages of the following controllers
(i) PD controller
(ii) PID controller
4. (a) Define trajectory planning and demonstrate $5+5$ the same for a PTP robot considering a modified uniform velocity of motion.
(b) Explain the various types of robotic sub systems.
5. (a) What are the various types of transmission $\mathbf{5 + 5}$ system used in Robotics ? Explain.
(b) What do you understand by degree of freedom? Explain with examples.
6. (a) Write the applications for point to point and $\mathbf{5 + 5}$ continous path planning.
(b) Differentiate between on-line and off-line Robot programming with the help of suitable examples.
7. (a) What are the "Laws of Robotics" ? 5+5
(b) Name few Robot manufacturers and their robot programming languages
8. (a) Explain the working principle of variable $5+5$ reluctance stepper motor.
(b) How the robots can be used in medical surgery ? Explain with suitable examples.
9. (a) Discuss the criteria of selection of drive $5+5$ systems for the robots, highlighting the merits and demerits of the system.
(b) The co-ordinates of a point $P_{a b c}$ in the mobile frame OABC is given by $[4,3,2 \sqrt{3}]^{\mathrm{T}}$. If the frame $O A B C$ is rotated 60° with respect to $O Y$ of the OXYZ frame, find the co-ordinates of $P_{x y z}$ with respect to the base frame.
10. Write short notes on any five of the following : $\mathbf{5 x 2 = 1 0}$
(a) Programmable Logic Controller.
(b) RPL
(c) Serial chain Robot
(d) Robot safety.
(e) Transducer
(f) SCARA-type Robot
