BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)

Term-End Examination
June, 2012
BME-028 : FLUID MECHANICS

Time : 3 hours
Maximum Marks : 70
Note: Answer any seven questions. Use of calculator is permitted.

1. (a) Find the depth of a point below water $\mathbf{5 + 5}$ surface in sea where pressure intensity is $1.006 \mathrm{MN} / \mathrm{m}^{2}$. Specific gravity of sea water $=1.025$.
(b) An empty ballon and its equipment weighs 441.45 N . When inflated with gas weighing $5.415 \mathrm{~N} / \mathrm{m}^{3}$, the ballon is spherical and 7 m in diameter. What is the maximum weight of cargo that the ballon can lift? Assume the weight tobe $12.066 \mathrm{~N} / \mathrm{m}^{3}$.
2. (a) An incompressible fluid flows steadily $\mathbf{5 + 5}$ through two pipes of diameter 0.15 m and 0.2 m which combine to discharge in a pipe of 0.3 m diameter. If the average velocities in the 0.15 m and 0.2 m diameter pipes are $2 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ respectively, then find the average velocity in the 0.3 m diameter pipe.
(b) Determine which of the following pairs of velocity components u and v satisfy the continuity equation for a two-dimensional flow of an incompressible fluid.

$$
\begin{align*}
& \text { (i) } \quad u=(x+y) ; v=\left(x^{2}-y\right) \tag{i}\\
& \text { (ii) } \quad u=\mathrm{A} \sin x y ; v=-\mathrm{A} \sin (x y)
\end{align*}
$$

3. (a) Which of the following stream function ψ are possible irrotational flow fields?
(i) $\quad \psi=A \sin x y$
(ii) $\psi=y^{2}-x^{2}$
(b) Calculate the velocity components u and v for the following velocity potential functions ϕ :
(i) $\phi=x^{2}-y^{2}$
(ii) $\phi=\log (x+y)$
which of these velocity potential functions satisfy the continuity equation?
4. (a) The velocity components in the $x-$ and $\mathbf{5 + 5}$ y - directions are given as:
$u=\frac{2 x y^{3}}{3}-x^{2} y$ and $v=x y^{3}-\frac{2 y x^{3}}{3}$
Indicate whether the given distribution is a possible field of flow or not.
(b) A tank 1.5 m high stands on a trolley and is full of water. It has an orifice of diameter 0.1 m at 0.3 m from the bottom of the tank. If the orifice is suddenly opened, what will be the propelling force on the trolley ? Co-efficient of discharge of the orifice is 0.60 .
5. (a) Distinguish between laminar flow and $5+5$ turbulent flow in pipes.
(b) Obtain the condition for maximum efficiency in transmission of power through a pipeline?
6. (a) What is meant by water hammer? Why $5+5$ are the pipes connected in parallel ?
(b) Discuss the concept of the boundary layer with reference to fluid motion over a flat plate.
7. (a) Derive an expression for mean velocity for $\mathbf{5 + 5}$ laminar flow between parallel plates.
(b) Explain the terms:
(i) Metacentre and
(ii) Metacentric height
8. The resistance R, to the motion of a supersonic $\mathbf{1 0}$ aircraft of length L , moving with a velocity V in air of density ρ, depends on the viscosity μ and bulk modulus of elasticity K of air. Obtain using Buckingham's π-theorem or Rayleigh's method, the following expression for the resistance R.

$$
R=\left(\rho L^{2} V^{2}\right) \phi\left[\left(\frac{\mu}{\rho L V}\right),\left(\frac{K}{\rho V^{2}}\right)\right]
$$

9. (a) A semi-tubular cylinder of 75 mm radius $\mathbf{5 + 5}$ with concave side upstream (drag coefficient $=2.3$) is submerged in flowing water of velocity $0.6 \mathrm{~m} / \mathrm{s}$. If the cylinder is 7.2 m long, calculate the drag. Assume density of water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(b) At a certain point in caster oil the shear stress is $0.216 \mathrm{~N} / \mathrm{m}^{2}$ and the velocity gradient $0.216 \mathrm{~s}^{-1}$. If the mass density of caster oil is $959.42 \mathrm{~kg} / \mathrm{m}^{3}$, find kinematic viscosity.
10. (a) If $5 \mathrm{~m}^{3}$ of a certain oil weighs $40 \mathrm{kN}, 5+5$ calculate the specific weight, mass density and specific gravity of the oil.
(b) For the following type of velocity distribution obtain the values of $\left(\frac{\delta^{*}}{\delta}\right)$ and $\left(\frac{\theta}{\delta}\right)$

$$
\frac{u}{v}=2(y / \delta)-2(y / \delta)^{3}+(y / \delta)^{4}
$$

