01995

BME-027

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

June, 2012

BME-027 : HEAT AND MASS TRANSFER

Time : 3 hours			Maximum Marks : 70	
Note	:	(i) (ii) (iii)	Answer any seven questions. All questions carry equal marks. Use of calculator is permitted .	
1.	(a)		What is meant by Heat Transfer ? Explain 6 the different modes of Heat Transfer.	
	(b)	~	ain the "Stefan - Boltzmann" law of ation.	4
2.	(a)		t are the types of evaporators ? Explain briefly.	5
	(b)	unifc (B) a diag PA ₁ PA ₂	nonia gas (A) is diffusing through a form tube 0.10m long containing N ₂ gas at 1.0132×10^5 Pa and 298K. The ram is given below. At point 1, = 1.013×10^4 Pa and at point 2, = 0.507×10^4 Pa. The diffusivity = 0.230×10^{-4} m ² /Sec.	5


BME-027

P.T.O.

Calculate :

(i) The flux $J_{\mathbf{A}}^{*}$ at steady state.

(ii) Repeat for $J_{\mathbf{B}}^{\tau}$.

3. (a) How the Heat Exchangers are classified ? 5Explain any one of them.

5

- (b) In a single-pass shell and Tube heat exchanger the inlet and outlet temperatures for the hot fluid are respectively $T_{h,i} = 260^{\circ}C$ and $T_{h, O} = 140^{\circ}C$; for the cold fluid, they are $T_{c, i} = 70^{\circ}C$ and $T_{c, O} = 125^{\circ}C$. Calculate the logarithmic mean temperature difference for :
 - (i) Counter flow and
 - (ii) Parallel-flow arrangements.
- 4. (a) Explain about "Fire Tube Boiler" with a 5 diagram.
 - (b) What is a fin ? Explain with examples of fins and their necessity to attach in a Heat exchanger.

BME-027

2

- 5. (a) It was found during a test in which water flowed with a velocity of 2.44 m/s through a tube (2.54 cm inner diameter and 6.08 m long), that the heat lost due to friction was 1.22 m of water? Estimate the surface heat transfer coefficient based on Reynolds analogy. Take $\rho = 998$ kg/m³ and Cp = 4.187 KJ/kg K.
 - (b) Explain about "Kirchoff's law".
- 6. (a) What is meant by convection ? Explain the 3 types of convection.
 - (b) Explain the methods of evaluation of Heat 7 transfer coefficient.
- 7. (a) What is Prandtl Mixing Length theory ? 4 Explain.
 - (b) A surface emits as a black body at 2000 K. 6 What is the rate per unit area (w/m^2) at which it emits radiation in directions corresponding to $0^\circ \le \theta \le 60^\circ$ and in the wavelength interval 3 $\mu m \le \lambda \le 5 \mu m$?
- 8. (a) Explain the errors that commonly occur in 5 numerical solutions of Heat conduction problems.
 - (b) A load of peas at a temperature of 25°C is to be cooled down in a room at a constant air temperature of 1°C.
 - (i) How long the peas will require to cool 5 down to 2°C, when the surface heat transfer coefficient of the peas is 5.81 W/m²K ?

BME-027

3

P.T.O.

5

5

- (ii) What is the temperature of the peas after a lapse of 10 min from the start of cooling? (Given dia of peas = 8mm, density is 750 kg/m³ and sp. heat = 3.35 KJ/kg K.)
- 9. (a) What is meant by evaporation ? Explain 5 working principle of single effect evaporator with sketch.
 - (b) Discuss about "Planck's Law". 5
- 10. (a) What are the different regimes of 5"Pool-Boiling" ? Explain any one of them.
 - (b) What will be the concentration of oxygen 5 dissolved in water at 298 K when the solution is in equilibrium with air at 1 atm. pressure ? The Henry's law constant is 4.38×10^4 atm/mol fraction.

BME-027