No. of Printed Pages : 3

BME-018

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) B.Tech. (Aerospace Engineering) (BTMEVI) Term-End Examination June, 2012

BME-018 : ENGINEERING MATERIALS

Time : 3 Hours Maximum I		Iours Maximum Marks :	Marks : 70	
Note : Answer any five of the following questions. Use of calculator is allowed .				
1.	(a)	What is stainless steel ? Mention those properties which distinguish stainless steel from plain carbon steel.	7	
	(b)	List aluminium alloys commonly used for engineering applications. Give their properties and applications.	7	
2.	(a)	How is silicon carbide protected from oxidation at high temperature ? Explain.	7	

(b) What is abrasive ? Which materials are used 7 for abrasive cutting ? Compare their hardness.

BME-018

- From creep tests on 713C alloy the constant C in 14 Larson - Miller parameter is determined as - 85.75. In rupture test a specimen of this material fails after 500 hours at 34 MPa and 1373K while another specimen at a stress level 136 MPa and at temperature of 1308K fails after 3 hours. Calculate stress to cause failure after 30,000 hours at 1173K.
- 4. (a) Describe three basic structure of a polymers. 7
 Which structure is preferable for mechanical strength ?
 - (b) What is an adhesive ? Distinguish between 7 structural and non - structural adhesives.
- 5. (a) What are the two requirements that a 6 specimen must fulfill for fracture toughness determination ?
 - (b) How is Griffith theory modified to consider 8 plastic deformation in close vicinity of crack tip ?
- 6. (a) Explain dry friction, boundary lubrication 6 and film lubrication.
 - (b) Explain different methods of surface 8 treatment.

BME-018

2

- 7. (a) Define modulus of resilience and modulus of toughness. $4x3^{1/2}=14$
 - (b) Distinguish between killed and semi killed steels.
 - (c) Describe various types of insulators.
 - (d) How are composite cylinders and tubes manufactured ?

BME-018