BACHELOR OF TECHNOLOGY IN

MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)
 B.Tech. (AEROSPACE ENGINEERING)

Term-End Examination

June, 2012

BME-016 : ENGINEERING MECHANICS

Time : 3 hours Maximum Marks : 70

Note: (i) Answer any five questions.
(ii) Use of calculator is permitted.

1. (a) Find the magnitude and direction of the $7+7$ resultant force for the force system shown in fig. 1.

Fig. 1
(b) A cord tied at A and B carries a load of 10 kN at D and W at C as shown in the fig. 2 . Find the value of W so that part $C D$ remains horizontal.

Fig. 2
2. (a) Find the effort required to lift load of $1 \mathrm{KN} \mathrm{7+7}$ with the help of a screw jack. Also find the corresponding efficiency of the jack Take $\mu=0.04$, Diameter of screw rod $=62.5 \mathrm{~mm}$ Length of the handle $=300 \mathrm{~mm}$, Pitch of the square threads $=12.5 \mathrm{~mm}$.
(b) For the block shown in the fig.3. Find the smallest value of P .
(i) Just to move the block up plane
(ii) Just to prevent the block moving down. Take co - efficient of static friction $=0.2$.

Fig. 3
3. (a) Find the centroid of a plane lamina shown $7+7$ in the fig. 4.

Fig. 4
(b) Find Moment of Inertia of a plane lamina shown in the fig. 5 . about its horizontal axis. Also find the radius of gyration.

Fig. 5
4. (a) A load of 1200 N is to be lifted by 3 different $7+7$ systems of pulleys. If efficiency of each system is 70% and total 5 pulleys in each system, determine the effort required in the I, II and III systems of pulleys.
(b) Find the nature and magnitude of forces in members of a truss shown in fig.6.

Fig. 6
5. (a) A uniform bar of 1.2 m length and of mass 5 kg is hinged at O . The bar is released from its horizontal position OA. Determine the angular velocity of bar when it is at angle 30° and 90° with respect to OA. Ref fig. 7 .

Fig. 7
(b) A hammer of mass 400 kg falls through a height of 3 m on a peg of negligible mass. Find the depth of the penetration of the peg in the ground if average resistance of the ground is 40 KN per mm . Assume that impact between hammer and peg is perfectly elastic.
6. (a) Find the forces in the members CE, CD and 7+7 AC of the truss shown in the fig .8. Use method of section.

Fig. 8
(b) Find the support reactions for a beam shown in fig. 9.

Fig. 9
7. (a) Find the accelerations of block A and $B \quad 7+7$ shown in the fig. 10. if system is released from rest. The contact surfaces are smooth and pulley is frictionless. Take mass of blocks A and $B 10 \mathrm{~kg}$ and 15 kg respectively.

Fig. 10
(b) Determine the maximum speed at which a car of weight 0.75 KN can make a horizontal turn around a circular curve of radius 300 m that is banked at 10° with the horizontal. The co-efficient of static friction between the tyre and the road is 0.5 .
8. (a) Determine the tensions in the strings and $7+7$ accelerations of blocks A and B weighing 150 N and 50 N connected by a string and a frictionless and weightless pulley as shown in fig. 11.

(b) A particle is projected at an angle of 60° with the horizontal. The horizontal range of particle is 5 kilometres. Find
(i) The velocity of projection and
(ii) The maximum height attained by the projectile.
9. (a) Find the M.I. of the lamina shown in the $10+4$ fig. 12 about its horizontal centroidal axis.

Fig. 12
(b) Explain
(i) Pappu - Guldinas $I^{\text {nd }}$ theorem
(ii) Couple and its characteristics.

