BACHELOR OF TECHNOLOGY IN

 MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)Term-End Examination
June, 2012

BME-015 : ENGINEERING MATHEMATICS-II

Time : $\mathbf{3}$ hours

Maximum Marks : 100
Note: Answer any ten questions. All the questions carry equal marks. Use of calculator is permitted.

1. Test the convergence or divergence of the series

$$
\frac{\sqrt{2-1}}{3^{3}-1}+\frac{\sqrt{3-1}}{4^{3}-1}+\frac{\sqrt{4-1}}{5^{3}-1}+\frac{\sqrt{5-1}}{6^{3}-1}+\cdots \cdots
$$

2. Find the general solution of $y^{\prime \prime}+x y^{\prime}-x^{2} y=0$ in the form of power series in powers of x.
3. Find the radius of convergence of the series

$$
\frac{1}{2} x+\frac{1.3}{2.5} x^{2}+\frac{1.3 .5}{2.5 .8} x^{3}+\ldots \ldots .
$$

4. Show that for $-\pi<x<\pi$

$$
\sin \mathrm{a} x=\frac{2 \sin \mathrm{a} x}{\pi}\left(\frac{\sin x}{1^{2}-\mathrm{a}^{2}}-\frac{2 \sin 2 x}{2^{2}-\mathrm{a}^{2}}+\frac{3 \sin 3 x}{3^{2}-\mathrm{a}^{2}}-\cdots \cdot .\right)
$$

5. Find a series of cosines of multiple of x which will represent $x \sin x$ in the interval $(0, \pi)$.
6. If n is positive integer, prove that $(1+i \sqrt{3})^{n}-(1-i \sqrt{3})^{n}=2^{n+1} \cos ^{n \pi / 3} \quad$ and Hence find the value when $n=9$.
7. If $w=\phi+i \psi$ represents the complex potential for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ determine the function ϕ.
8. Obtain the Lament's series expansion of $\frac{\mathrm{e}^{z}}{z\left(z^{2}+1\right)}, 0<|z|<1$.
9. Evaluate the following integrals by contour integration $\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}} a>b>0$
10. Prove that:

$$
\int_{0}^{\pi} \frac{a \operatorname{d} \theta}{a^{2} \sin ^{2} \theta}=\frac{\pi}{\sqrt{1+a^{2}}}, a>0
$$

11. Evaluate :

$$
\int_{0}^{\alpha} \frac{x^{\mathrm{a}-1}}{x^{2}+x+1} \mathrm{~d} x, 0<\mathrm{a}<2
$$

12. Find a transformation which will map a 60° sector of the unit circle in 2 - plane in to the upper half of the w-plane.
13. Find the general solution of $9 y^{\prime \prime}-6 y^{\prime}+y=0$
14. Use the method of laplace transforms to find the solution of
$y^{\prime \prime}+a y=6 \cos 3 t$,
$y(0)=2, y^{\prime}(0)=0$
15. Find the solution of the heat conduction problem
$\mathrm{U}_{x x}=4 \mathrm{U}_{\mathrm{t}} 0<x<2 \mathrm{t}>0$
$U(0, t)=0=u(2, t) \quad t \geqslant 0$
$\mathrm{U}(x, 0)=2 \sin \frac{\pi x}{2}-\sin \pi x+4 \sin 2 \pi x$
