BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination
01899 June, 2012

BME-001 : ENGINEERING MATHEMATICS-I

Time : $\mathbf{3}$ hours
 Maximum Marks : 70

Note: All questions are compulsory. Use of calculator is allowed.

1. Answer any five of the following : $5 \times 4=\mathbf{2 0}$
(a) Given $\mathrm{f}(x)=\left\{\begin{array}{lc}\mathrm{a} & \text { if } x \text { integer } \\ \mathrm{b} & \text { otherwise }\end{array}\right.$ where $\mathrm{b} \neq \mathrm{a}$.

Does $\lim _{x \rightarrow 0} f(x)$ exist. If yes, find its value.
(b) Discuss the continuity of the function $\mathrm{f}(x)=[x], x \in \mathrm{R}$ at $x=0$. Where $[\bullet]$ is greatest integer function.
(c) Attempt any one part of the following:
(i) Find the interval in which the function $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
(A) strictly increasing
(B) strictly decreasing
(ii) Show that of all the rectangle of given area the square has the smallest perimeter.
(d) Find the area enclosed between the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and above the line $\frac{x}{a}+\frac{y}{b}=1$ which lies in the first quadrant.
(e) If $x+y+z=u, y+z=u v, z=u v w$ then show

$$
\text { that } \frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v
$$

(f) Solve the differential equation

$$
y \sin 2 x \mathrm{~d} x-\left(y^{2}+\cos ^{2} x\right) \mathrm{d} y=0 .
$$

2. Answer any four of the following :

$$
4 \times 5=20
$$

(a) Find the directional derivative of $\phi=5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x$ at the point ($1,1,1$) in the direction of the line

$$
\frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1} .
$$

(b) Show that $\nabla r^{n}=n r^{n-2} \vec{r}$ and hence

$$
\begin{aligned}
& \text { evaluate } \nabla\left(\frac{1}{\mathrm{r}}\right) \text {, where } \\
& \overrightarrow{\mathrm{r}}=x \hat{i}+y \hat{j}+z \hat{k}
\end{aligned}
$$

(c) A fluid motion is given by

$$
\overrightarrow{\mathrm{v}}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}
$$

(i) Is this motion irrotational ?
(ii) Is the motion possible for an incompressible fluid?
(d) Evaluate $\iint_{S} \overrightarrow{\mathrm{~A}} . \hat{\mathrm{n}} \mathrm{ds}$, where
$\overrightarrow{\mathrm{A}}=\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}$ and s is the surface of the plane $2 x+y+2 z=6$ in the first octant.
(e) Use Gauss divergence theorem to evaluate the surface integral
$\iint_{s}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y)$ where s is the portion of the plane $x+2 y+3 z=6$ which lies in the first octant.
(f) Using Green's theorem, evaluate $\int_{c}\left(x^{2} y \mathrm{~d} x+x^{2} \mathrm{~d} y\right)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0),(1,0),(1,1)$.
3. Answer any five of the following:
$5 \times 3=15$
(a) Employing elementary transformations, find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

(b) For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$, find non - singular matrices P and Q such that PAQ is in the normal form.
(c) Determine the values of ' a ' and ' b ' for which the system
$\left[\begin{array}{ccc}3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & \mathrm{a}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}\mathrm{b} \\ 3 \\ -1\end{array}\right]$ has
(i) a unique solution
(ii) no solution
(iii) infinitely many solution.
(d) Show that the vectors $x_{1}=(1,2,4), x_{2}=$ $(2,-1,3) x_{3}=(0,1,2)$ and $x_{4}=(-3,7,2)$ are linearly dependent.
(e) Find the characteristic equation of the
matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ and hence find
the eigen - value.
(f) Solve the system by Cramer's rule :

$$
\begin{aligned}
& 2 x-y+3 z=2, x+3 y-z=11 \\
& 2 x-2 y+5 z=3
\end{aligned}
$$

(g) Verify Cayley - Hamilton theorem for the

$$
\text { matrix } A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

4. Answer any three of the following:
(a) In a bolt factory, machines A, B and C manufacture $25 \%, 35 \%$ and 40% of the total output respectively. Of their outputs, 5%, 4% and 2% are defective bolts. A bolt is chosen at random and found to be defective. What will be the probability that the bolt came from machine A, B and C ?
(b) The probability that a man aged 60 will live to be 70 is 0.65 . What is the probability that out of 10 men, now 60 , at least 7 will live to be 70 ?
(c) A box contains 2 black, 4 white and 3 red balls. One ball is drawn at a time randomly from the box till all the balls are drawn from it. Find the probability that the balls drawn are in the sequence of 2 black, 4 white and 3 red.
(d) If the variance of the Poisson distribution is 2, find the probabilities for $r=1,2,3,4$ from the recurrence relation of the Poisson distribution. Also find $P(r \geqslant 4)$.
(e) Ten individuals are chosen at random from the population and their heights are found to be inches $63,63,64,65,66,69,69,70,70,71$. Discuss the suggestion that the mean height in the universe is 65 inches given that for 9 degree of freedom the value of student's ' t ' at 0.05 level of significance is 2.262 .
