No.	of	Printed	Pages	:	3
-----	----	---------	--------------	---	---

BIEL-017

B.Tech. IN ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2012

BIEL-017: OPTICAL FIBER COMMUNICATION

Tim	e: 3 h	ours Maximum Marks : 7	0
Not		ll questions carry equal marks. ttempt any seven questions out of Ten questions.	<u>-</u>
1.	(a)	Explain the advantages of optical communication system and compare with electrical communication.	5
	(b)	What is pulse broadening?	5
2.	(a)	Explain the formation of skew rays in optical fiber.	5
	(b)	An optical fiber in air has a NA (Numerical Aperture) of 0.4. Compare the acceptance angle for meridional rays with that for skew rays which change direction by 100° at each reflection.	5

3. A graded index fiber has a core with parabolic refractive index profile, which has a diameter of $50 \mu m$. The fiber has a numerical aperture of 0.2. Determine: V-number of optical fiber (a) 5 (b) Total no. of guided modes propagating in 5 the fiber when it is operating at 1 µm. 4. (a) Explain different types of losses in optical 5 fiber. (b) Explain types of dispersion in optical fiber. 5 5. (a) Explain fiber drawing process during optical 5 fiber fabrication. What is the difference between fiber splices (b) 5 and connectors? 6. (a) What is population inversion? Explain how 5 it helps in emission of energy? (b) Calculate the ratio of the stimulated 5 emission rate to the spontaneous emission rate for an incandescent lamp operating at a temperature of 1000° k. It may be assumed that the average operating wave length is $0.5 \mu m$.

7.	(a)	Explain the optical detection principle of a optical source.	5	
	(b)	Explain the detection principle of pin photo- diode.	5	
8.	(a)	What is photoconductive detectors?	5	
	(b)	The electron transit time in an InGaAs photoconductive detector is 5 ps. Determine the maximum $3-\alpha\beta$ bendwith permitted by the device when its photoconductive gain is 70.	5	
9.	(a)	What are the different types of noise affecting the optical receiver?	5	
	(b)	Draw and explain a digital optical fiber receiver.	5	
10.	Write short notes on any two: 2x5=			
	(a)	Automatic Gain Control		
	(b)	Optical Modulator		
	(c)	Polarization		