B.TECH. IN ELECTRONICS AND COMMUNICATION ENGINEERING

Term-End Examination
June, 2012

BIEL-011 : LINEAR INTEGRATED CIRCUITS

Time : $\mathbf{3}$ Hours
Maximum Marks : 70
Note : Attempt any seven questions. Each question carries ten marks. Q-10 is compulsory. Assume suitable data, wherever required. Use of Scientific calculator is permitted.

1. Draw a Cascode Amplifier circuit using BJT. Show 10 the derivation for its DC analysis.
2. For the circuit shown in FIG. (2), 10
prove that $A F=\left[\frac{A\left(R_{1}+R_{F}\right)}{R_{1}+R_{F}+A R_{1}}\right]$.

Also prove that $A F=\frac{1+R_{F}}{R_{1}}$, for $A R_{1} \gg\left(R_{1}+R_{F}\right)$

3. In the circuit of FIG (3). If $R_{1}=R_{2}=1 k \Omega$,
$R_{F}=R_{3}=10 \mathrm{~K} \Omega, V_{d}=5 \mathrm{mV}$, sinewave at 1 kHZ and $\mathrm{V}_{\mathrm{ni}}=2 \mathrm{mV}$.at 60 Hz . Calculate
(a) The output voltage at 1 kHz
(b) The amplitude of the induced 60 Hz noise at the output.
Assume $\mathrm{CMRR}=90 \mathrm{db}$ for IC 741

Figure (3)
4. Obtain the expression for the open loop voltage $\mathbf{1 0}$ gain as a function of frequency. What are the observations made?
5. (a) Design a differentiator to differentiate an 10 input signal that varies frequency from 10 Hz to 20 kHz . Assume suitable value for the design if required.
(b) If the sine wave of 1 V peak at 1000 Hz is applied to the circuit in part (a), find the output of the circuit.
6. Prove that for a Wein - Bridge oscillator, the
frequency of oscillations is fo $=\frac{1}{2 \pi \mathrm{RC}}$. Also derive the condition of oscillations. Draw the relevant circuit using IC-741.
7. What is a Precision Rectifier ? Draw the circuit 10 for a small signal half-wave rectifier and its output waveform. Explain its operation.
8. Draw the circuit of a summing Amplifier using 10 three resistances, operating in inverting mode. How will you convert it to a summing, scaling and averaging amplifier? Derive the expressions for each.
9. Draw circuits for Schmitt Trigger and a zero $\mathbf{1 0}$
crossing detector. Draw their relevant wave forms
and explain their operation.
10. Write short notes on any two :
$2 \times 5=10$
(a) A current mirror
(b) A level translator
(c) Sample and hold circuit

