B.Tech. IN ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2012

BIEL-005: ANALOG ELECTRONIC CIRCUITS

Time: 3 Hours

Maximum Marks: 70

Attempt any seven questions. All questions carry equal Note: marks.

For the network of fig. 1 1.

10

Fig. 1

- (a) Determine r_e .
- Find Z_i (with $r_0 = \infty \Omega$) (b)
- Calculate Z_0 (with $r_0 = \infty \Omega$) (c)
- Determine A_v (with $r_0 = \infty \Omega$) (d)
- Find A_i (with $r_0 = \infty \Omega$) (e)

- 2. Draw and explain the Darlington connection. 10 What is the main advantage of it. Also calculate the current gain provided by Darlington connection of two identical transistor each having a current gain of β = 200.
- Draw and explain the high frequency transistor small signal ac equivalent circuit of a BJT. Also derive the formula for gain bandwidth product (F_T):
- 4. Compare the class A, B, AB and C amplifiers. 10
 Draw and explain the complementary symmetry
 push pull circuit and also show that which type
 of distortion occurs in it
- Write the behaviour of tuned amplifiers. Explain the series and parallel resonant circuit. Also write the advantages of tuned amplifiers.
- What are the advantages of negative feedback.
 Draw the connection diagram of all four feedback topology.
- 7. Determine the voltage gain, i/p and o/p 10 impedance with feedback for voltage series feedback having A=-100, $R_i=10k\Omega$, $R_o=20k\Omega$ for feedback of
 - (a) $\beta = -0.1$
 - (b) $\beta = -0.5$

- 8. What is the Barkhausen criteria of oscillation? 10 Explain the Wien Bridge oscillator. Also calculate the frequency of oscillations of a Hartley oscillator having $L_1 = 0.5$ mH, $L_2 = 1$ mH and $C_3 = 0.2$ μ F.
- 9. Define Monostable, Astable and Bistable 10 multivibrator. Also explain the operation of 555 timer with the sketch of diagram.
- 10. Write short notes on any two:

5x2=10

- (a) Single tuned Amplifiers
- (b) Cascade Amplifiers
- (c) Equivalent circuit of BJT using h-parameters.