BIEL-003

00315

B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2012

BIEL-003 : DIGITAL ELECTRONICS

Time : 3 hours Maximum Marks : 70

Note : Attempt any seven questions. All questions carry equal marks.

1.	(a)	Design NAND gate using CMOS and Explain it.	5
	(b)	Differentiate between ROM, PLA and PAL.	5
2.	(a)	Design a 4-digit 7-segment LED display system with leading zero blanking	6
	(b)	Construct Hamming code for BCD data 0110. Use even parity.	4
3.	(a)	Make K-Map for the following function $f=AB + A\overline{C} + C + AD + A\overline{B}C + ABC$ Express f in canonical SOP form and Minimize it. Realize the minimized expression using NAND gates only.	5
	(b)	Design JK flip-flop. Explain Race Around condition in JK flip-flop.	5

BIEL-003

P.T.O.

- Draw TTL circuit for Totempole output and 10 explain its working. Why it is not used for WIRED AND connection.
- (a) Explain Quine-Mc-cluskey method and 6 differentiate between Prime Implicant and Essential Prime Implicant.
 - (b) Write and Explain Excitation table for 4 D flip-flop.
- 6. Design a digital system with two flip-flops E and 10 F and one 4-bit binary counter, A the individual flip-flop's in A are denoted by A_4 , A_3 , A_2 , A_1 with A_4 holding the MSB of the count. A start signal S initiates the system operation by clearing the counter A and flip-flop F. The counter then incremented by 1 starting from next clock pulse and continues to increment until operation stop Counter bits A_3 and A_4 determine sequence of operations:

If $A_3=0$, $E \leftarrow 0$ and count continues.

If $A_3=1$, $E \leftarrow 1$ and then if $A_4=0$, count continues but if $A_4=1$, $F \leftarrow 1$ on next clock pulse and system stops counting. Draw the ASM chart for the sytem.

- 7. (a) Draw the circuit of 4-bit ring counter and 5 explain its operation. Write its applications.
 - (b) What is the difference between static RAM and Dynamic RAM.

5

BIEL-003

2

8.	(a)	Implement with 8 : 1 Mux	5
		$F(A, B, C, D) = \Sigma m(0, 1, 3, 4, 7, 8, 9, 11, 14, 15)$	
	(b)	Realize the J-K flip flop using SR flip flop.	5
9.	(a)	Design a Decade synchronous up counter. Use JK flip-flop.	5
	(b)	Why Asynchronous counters are called Ripple counters ? Explain.	5

10. Write short note on *any two* of the following : 5x2=10

- (a) Flash Memory
- (b) MOS as a switch.
- (c) ASCII and ESCII codes.

BIEL-003