B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2012

BIEL-003 : DIGITAL ELECTRONICS

Time : 3 hours
Maximum Marks : 70
Note : Attempt any seven questions. All questions carry equal marks.

1. (a) Design NAND gate using CMOS and 5 Explain it.
(b) Differentiate between ROM, PLA and PAL. 5
2. (a) Design a 4 -digit 7 -segment LED display 6 system with leading zero blanking
(b) Construct Hamming code for BCD data 4 0110. Use even parity.
3. (a) Make K-Map for the following function

5
$f=A B+A \bar{C}+C+A D+A \bar{B} C+A B C$ Express f in canonical SOP form and Minimize it. Realize the minimized expression using NAND gates only.
(b) Design JK flip-flop. Explain Race Around condition in JK flip-flop.

> 4. Draw TTL circuit for Totempole output and explain its working. Why it is not used for WIRED AND connection.
5. (a) Explain Quine-Mc-cluskey method and differentiate between Prime Implicant and Essential Prime Implicant.
(b) Write and Explain Excitation table for

4 D flip-flop.
6. Design a digital system with two flip-flops E and F and one 4 -bit binary counter, A the individual flip-flop's in A are denoted by $\mathrm{A}_{4}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}$ with A_{4} holding the MSB of the count. A start signal S initiates the system operation by clearing the counter A and flip-flop F. The counter then incremented by 1 starting from next clock pulse and continues to increment until operation stop Counter bits A_{3} and A_{4} determine sequence of operations:
If $\mathrm{A}_{3}=0, \mathrm{E} \leftarrow 0$ and count continues.
If $A_{3}=1, E \leftarrow 1$ and then if $A_{4}=0$, count continues but if $A_{4}=1, F \leftarrow 1$ on next clock pulse and system stops counting. Draw the ASM chart for the sytem.
7. (a) Draw the circuit of 4-bit ring counter and 5 explain its operation. Write its applications.
(b) What is the difference between static RAM 5 and Dynamic RAM.
8. (a) Implement with 8:1 Mux
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{\Sigma m}(0,1,3,4,7,8,9,11,14,15)$
(b) Realize the J-K flip flop using SR flip flop.

5
9. (a) Design a Decade synchronous up counter. 5 Use JK flip-flop.
(b) Why Asynchronous counters are called 5 Ripple counters ? Explain.
10. Write short note on any two of the following : $5 \times 2=10$
(a) Flash Memory
(b) MOS as a switch.
(c) ASCII and ESCII codes.

