B.Tech. Civil (Construction Management)

Term-End Examination

June, 2012

ET-540(B) : FLOW IN OPEN CHANNEL

Time : 3 hours
Maximum Marks : 70
Note: Solve any five questions. All questions carry equal marks. Give neat and labelled sketches.

1. (a) In a very mild slope why do we assume the 5 vertical depth of flow to be equal to the depth of flow perpendicular to the bed. Explain with a sketch.
(b) A triangular section (with central 7 angle $=60^{\circ}$) carries a flow at $y=2 \mathrm{~m}$. Find the corresponding T (Top width).
(c) What do you understand by Z (section 2 factor) of an open channel ? Explain it.
2. (a) A triangular open channel (with its central $\mathbf{8}$ angle $=70^{\circ}$) has a bed slope of 0.0011 , and $\mathrm{n}=0.015$. If a discharge of $55 \mathrm{~m}^{3} / \mathrm{s}$ is to pass off, what would be its normal depth of flow ? Use trial and error method.
(b) A trapezoidal channel $(b=5 \mathrm{~m})$ has

6 $\mathrm{n}=0.016$, and $\mathrm{z}=1$, and carries a flow of $10 \mathrm{~m}^{3} / \mathrm{s}$ at a depth of 1.25 m . Determine the bed slope of the channel.
3. A rectangular channel expands smoothly from 14 $b=2.5 \mathrm{~m}$ to $b=3.5 \mathrm{~m}$. At the upstream end, the velocity of flow $=1.95 \mathrm{~m} / \mathrm{s}$, for a depth of flow $=1.25 \mathrm{~m}$. Determine the flow depth after the expansion for no loss of energy. Compute the upstream and downstream value of Fronde No.
4. (a) A horizontal, rectangular channel ($b=2 \mathrm{~m}$) sustains a flow of $1.0 \mathrm{~m} 3 / \mathrm{s}$, with its flow depth $=0.17 \mathrm{~m}$. Determine the down stream depth required to give rise to a hydraulic jump. Why should, at all a jump form in this channel ?
(b) Show that at a critical flow $\mathrm{V}^{2} / 2 \mathrm{~g}=\mathrm{D} / 2$.
5. (a) Explain how to classify mild, steep, and critical slopes of a channel. Is a mild slope of a channel always so for all flows ? Explain.
(b) A steep channel carries a certain uniform 4 flow; and a barrier on it distort's the flow profile. Sketch the G.V.F. that will form behind the barrier. Explain its behaviour at its two extremes with the help of G.V.F. equations.
(c) Find the critical slope of a rectangular channel ($b=2 \mathrm{~m}$) for a discharge of $10 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. Take $\mathrm{n}=0.015$.
6. Discuss the flow characteristics of a very long 14 channel, connecting two reservoirs, if the flow is subcritical and the downstream depth is held constant.
7. Describe the use of specific energy and specific 14 force curves in locating a jump in a steep channel.
8. A trapezoidal channel $\left(b=6 m, z=2, S_{o}=0.0014, \quad 14\right.$ $\mathrm{n}=0.021$) carries a $\mathrm{Q}=10.0 \mathrm{~m} 3 / \mathrm{s}$. A dam stands on it, which gives rise to a depth of flow behind itself $=1.35 \mathrm{~m}$. Take $\alpha=1$, and compute x (w.r.t. dam) for a $y=1.3 \mathrm{~m}$ to exist, in one step.

