B.Tech. Civil (Water Resources Engineering)

Term-End Examination
 June, 2012
 ET-533(B) : OPEN CHANNEL FLOW

Time : 3 Hours
Maximum Marks : 70
Note : Answer ary five questions.
All questions carry equal marks.
Neat and well-labelled sketches are to be given where necessary. Use of calculator is permitted.

1. (a) A trapezoidal channel ($\mathrm{b}=2 \mathrm{~m} ; z=1$) 10 carries a uniform flow with $y=0.32 \mathrm{~m}$. If the discharge is 0.09 cumec , what is the bed slope of the channel ? Take $\mathrm{n}=0.015$.
(b) Solve (a) if $\mathrm{C}=54$. Why there is difference 4 in the value of bed slope compared to one obtained in (a) ? Explain.
2. (a) Derive the dimensions of Manning's 2 Coefficient ' n '.
(b) Derive the relation between c and n. 2
(c) What is the bed width of a channel for 4,6 carrying $\mathrm{Q}=10.75 \mathrm{~m}^{3} / \mathrm{s}$ at a critical depth of 0.88 m if :
(i) The channel section is rectangular.
(ii) The section is trapezoidal $(z=1)$
3. (a) A rectangular channel $(b=2.60 \mathrm{~m})$ carries a10 flow at a velocity of $0.98 \mathrm{~m} / \mathrm{s}$, and at a depth of 1.35 m . If at some location, its width is reduced by half, and also its bed is raised by 0.40 m , What happens to the upstream depth of flow?
(b) What do we mean by the maximum discharge through a channel at :
(i) a given specific energy
(ii) a given specific force
4. Giving a sketch, derive the governing equation of 14 the water surface profile in a non - uniform flow. Explain the sketch.
5. Sketch out any standard USBR energy dissipator 14 placed down - stream of a spillway. Explain the function of each element.
6. (a) Draw a cross - section of a spillway used in 8 a gravity dam. Explain how its various dimensions are arrived at.
(b) What is meant by its design head ? 3
(c) What is velocity of a approach in this 3 regard ? How does it affect the design head?
7. A river with an average bed slope of 0.00048 , bed width $=110 \mathrm{~m}$ carries a flow at a depth of 3.5 m . A low dam, across the river, raises the depth of water to 5.0 m , immediately behind itself. Calculate the length of the water surface profile that is developed using suitable length intervals. Take $\mathrm{n}=0.029$.
8. Write short notes on any four of the following :
(a) Design of a transition connecting a canal with an aqueduct that crosses over a river. What data is required for the design ?
(b) Method of characteristics \qquad and its basic use.
(c) celerity of a gravity wave and its significance.
(d) Protection of sea - shore against sea waves.
(e) Explanation of the fact that the value of n does not change whether we work with FPS or MKS units.
