## B.Tech. Civil (Construction Management) /

Term-End Examination

June, 2012

## ET-201(A) : MECHANICS OF FLUIDS

Time: 3 Hours
Maximum Marks : 70
Note: Attempt any seven questions. Suitably asssume any missing data. Be precise in your answer. Use of non-programmable calculators is permitted.

1. (a) What do you understand by vapour pressure and what is its effect on the flow? Explain with the help of a diagram.
(b) A flat plate of $0.1 \mathrm{~m}^{2}$ area moves at a velocity 5 of $30 \mathrm{~cm} / \mathrm{s}$ relative to a nother plate separated by a film of water 0.01 cm thick. Find the force and power required to maintain the velocity if the viscosity $\mu=0.001 \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$.
2. (a) What is a control volume ? Explain the 5 concept of control volume and its applications to basic equations.
(b) Determine the total force and its location on the face of an annular disk (circular disk with a hole) with outer and inner diameters. of 2 m and 1 m respectively located vertically 2 m below the water surface .
3. (a) Differentiate between:
(i) Compressible fluid and incompressible fluid.
(ii) Absolute viscosity and Kinematic viscosity.
(iii) Lift and drag.
(iv) Orifice and nozzle.
(b) Examine whether the velocity field given by 5 $\mathrm{u}=5 x^{3}, \mathrm{v}=-15 x^{2} y, \mathrm{w}=\mathrm{t}$ represents a possible fluid motion of an incompressible fluid.
4. (a) Derive Euler's equation in streamline coordinates. How can we obtain Bernouli's equation from it ? State the assumptions made.
(b) Air flows through a horizontal nozzle steadily discharging to the atmosphere. If the inlet area of the nozzle is $0.2 \mathrm{~m}^{2}$ and the area at the nozzle outlet is $0.04 \mathrm{~m}^{2}$. Determine the gauze pressure required at the inlet to produce an outlet velocity of $50 \mathrm{~m} / \mathrm{s}$. Take density of air at standard conditions as $1.23 \mathrm{~kg} / \mathrm{m}^{3}$.
5. (a) Classify the flows as uniform one dimensional, two dimensional and three dimensional flows giving examples.
(b) A river flowing through a campus appears quite silent. We can estimate the average velocity to be about $0.2 \mathrm{~m} / \mathrm{s}$. The depth is only 0.6 m . Calculate the Reynolds number and determine whether the flow is laminar or turbulent.
6. (a) Distinguish between Eulerian and 4 Lagrengian approach to fluid flow analysis.
(b) Two components of a velocity field are given 6 below. Find the third component. $u=x^{2}+y^{2}+z^{2}, v=x y^{2}-y z^{2}+x y$
7. (a) Explain the dimensional homogeneity in 4 functions of variables.
(b) A new design of the front of a ship is to be tested in a water basin. A drag of 12.2 N is measured on the $1: 20$ scale model when towed at a speed of $3.6 \mathrm{~m} / \mathrm{s}$. Determine the corresponding speed of the prototype ship and expected drag.
8. (a) What is a notch ? Compare it with a wier. 4
(b) When water flows through a 90 deg . 6 V-notch,'show that the discharge is given by $\mathrm{KH}^{5 / 2}$ where K is a constant and H is
the height of water above the bottom of the notch. Determine the value of $K$ when $H$ is measured in cm and Q in litres / s and the coefficient of discharge is 0.61 .
9. (a) Differentiate between the following: 5
(i) Displacement thickness and momentum thickness.
(ii) Stream lines and Streak lines.
(iii) Viscous and inviscid flow.
(iv) Laminar and Turbulent flow.
(b) Explain clearly the concept of viscocity in 5 liquids and also in gases.
10. Explain with sketch and other details any one 10 method of measuring .
(a) Pressure
(b) Velocity
(c) Discharge
(d) Viscosity
