B.Tech. Civil (Construction Management) /
 B.Tech. Civil (Water Resources Engineering)

Term-End Examination 01869
June, 2012

ET-105(B) : CHEMISTRY
Time: 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any five questions from the remainings. Use of calculator is permitted.

1. (a) The relative stability of various 2 conformation of ethane follows the order :
(i) skew $>$ staggered $>$ Eclipsed
(ii) staggered $>$ skew $>$ Eclipsed
(iii) Eclipsed $>$ skew $>$ staggered
(iv) staggered $>$ Eclipsed $>$ skew
(b) During Sulphonation of Benzene the 2 reacting electrophile formed is :
(i) $\quad \mathrm{HSO}_{4}^{\oplus}$
(ii) SO_{2}
(iii) SO_{3}
(iv) SO_{3}^{\oplus}
(c) Hybridisation found in Clf_{3} molecule is:
(i) SP^{2}
(ii) SP^{3}
(iii) $\mathrm{SP}^{3} \mathrm{~d}$
(iv) $\mathrm{SP}^{3} \mathrm{~d}^{2}$
(d) Which one of the following is most thermal stable compound ?
(i) MgCO_{3}
(ii) SrCO_{3}
(iii) CaCO_{3}
(iv) BaCO_{3}
(e) The acidic character of oxyacids of chlorine increases in order :
(i) $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(ii) $\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}$
(iii) $\mathrm{HClO}>\mathrm{HClO}_{2}>\mathrm{HClO}_{3}>\mathrm{HClO}_{4}$
(iv) $\mathrm{HClO}_{3}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{4}$
(f) Bond order in O_{2}^{-}is :
(i) 1
(ii) 2
(iii) 1.5
(iv) 2.5
(g) Complete the reaction:

$$
{ }_{20}^{40} \mathrm{Ca}+\mathrm{X}=\mathrm{Y}+{ }_{18}^{37} \mathrm{Ar}
$$

(h) During isothermal expansion of an ideal gas the value of ΔV and ΔH are :
(i) $\Delta \mathrm{V}>0, \Delta \mathrm{H}>0$
(ii) $\Delta \mathrm{V}<0, \Delta \mathrm{H}<0$
(iii) $\Delta \mathrm{V}=0, \Delta \mathrm{H}=0$
(iv) $\Delta \mathrm{V}>0, \Delta \mathrm{H}<0$
(i) Which one of the following is correct for 2 reversible adiabatic process ?
(i) $\mathrm{TP}^{1-y / y}=$ constant
(ii) $\mathrm{TP}^{\gamma-1 / \gamma=\text { constant }}$
(iii) $\mathrm{TP}^{\gamma / 1-\gamma}=$ constant
(iv) $\mathrm{T}^{\gamma} \mathrm{P}^{1-\gamma}=$ constant
(j) When 3 moles of an ideal gas at $200^{\circ} \mathrm{C}$ are
subjected to an increase of pressure from 1 bar to 10 bar, what is $\Delta \mathrm{G}$?
($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$)
2. (a) Calculate the ground state energy of the 3 electron (in ev) for Li^{2+} ion.
(b) Calculate the short and long wavelength 4 limits of Lyman series in the spectrum of Hydrogen atom. [$\mathrm{R}_{\mathrm{H}}=109,677 \mathrm{~cm}^{-1}$]
(c) A ball having weight 100 g is to be located 3 within $0.1 \mathrm{~A}^{\circ}$. What is the uncertainty in its velocity?
3. (a) Calculate the number of atoms contained 6 within :
(i) A primitive cubic unit cell
(ii) A Body-centered cubic unit cell
(iii) A Face-centered cubic unit cell
(b) Atomic Aluminium Al (At. $\mathrm{wt}=26.98 \mathrm{~g} / \mathrm{mol}$) crystallizes into a FCC structure with a density of $2698 \mathrm{~kg} / \mathrm{m}^{3}$. When X-rays of wavelength 0.1537 nm diffracted from the (111) planes of this lattice, gave a maximum intensity at an angle of 19.2°. Calculate the Avogadro number using the above information $\sin (19.2)=0.328866$.
4. (a) A Zinc rod is dipped into O.M solution of ZnSO_{4} at $25^{\circ} \mathrm{C}$. Assuming that the salt is 95% dissociated at this dilution, calculate the potential of the electrode at the given temperature. $\mathrm{E}_{\left(\mathrm{Zn}^{2+}, \mathrm{Zn}\right)}^{0}=0.76 \mathrm{~V}$.
(b) The standard EMF of the Daniell cell involving the cell reaction $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$ is 1.10 V . Calculate the equilibrium constant of the cell reaction at $25^{\circ} \mathrm{C}$.
$\left[\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
5. (a) What is Phase rule ? 2
(b) What is eutectic mixture? 2
(c) Draw Phase diagram for a two component 6 system forming a compound.
6. (a) What is Raoult's law ? 2
(b) What is common ion effect? 2
(c) What is Buffer action and Buffer solution? 2
(d) Define equivalent conductance. 2
(e) What is order of a reaction? 2
7. (a) Name the monomers required for the 3 synthesis of Nylon-6, 6. Write down the reaction involved.

(b) Name the monomers required for the
3
synthesis of Terylene. Write down the
reaction involved.
(c) What is natural rubber ? $\quad 1$
(d) Name the reaction center Chlorophylls of 1 Photosystem I and Photosystem II.
(e) What are hybridoma cells ? Give one
important benefit of monoclonal antibody.
8. (a) Name any two aromatic amino acids. 2
(b) Outline different strategies applied during 4 genetic engineering.
(c) What are the advantages of immobilized 4
enzymes over raw enzymes.
9. (a) Show the splitting of d-orbitals energies in 4 octahedral and tetrahedral crystal field.
(b) Calculate the CFSE for d^{4} configuration in 2
a weak ligand octahedral environment.
(c) Draw the possible geometrical isomers 2
formed by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(d) Write the IUPAC name for $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$. 2
10. (a) Complete the reaction sequence :
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\text { ether }]{\mathrm{Mg}} X \xrightarrow[\text { (2) } \mathrm{H}_{2} \mathrm{O}]{\text { (1) } \mathrm{CH}_{3} \mathrm{CHO}} \mathrm{Y}$
(b) Draw the Newman projection of Butane

2 using the C-2 to C-3 bond as reference in the eclipsed forms.
(c) Complete the reaction sequence :

$$
\underset{\mathrm{H}_{3} \mathrm{C}^{\prime}}{\mathrm{H}_{3} \mathrm{C}_{\backslash}} \mathrm{C}=\mathrm{O}+\mathrm{NH}_{2} \mathrm{NH}_{2} \longrightarrow \mathrm{X} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \mathrm{Y}
$$

(d) Complete the reaction sequence :

(e) Write the IUPAC name of 2

