B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)
 B.Tech. (Aerospace Engineering)

Term-End Examination

00289
June, 2012

ET-102 : MATHEMATICS III

Time : 3 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any other eight questions from Q. No. 2 to Q. No. 15. Use of calculator is allowed.

1. Complete the following :
$7 \times 2=14$
(a) The sequence $\left\langle x_{n}\right\rangle$, where $x_{n}=\left(1+\frac{1}{n}\right)^{n+1}$,
is monotonically \qquad sequence and is bounded and converges to a finite positive limit whose value is \qquad .
(b) The radius of convergence of the series

$$
\frac{1}{2} x+\frac{1.3}{2.5} x^{2}+\frac{1.3 .5}{2.5 .8} x^{2}+\ldots \ldots . . \text { is }
$$

\qquad .
(c) If $\mathrm{u}=2 x-3 x^{3}+9 x y^{2}$ is a harmonic function, then its conjugate function v is \qquad .
(d) The essential singularity of the function

$$
f(z)=z^{\mathrm{n}} \mathrm{e}^{1 / z}(1+z)^{-1}, \mathrm{n} \in \mathrm{~N}, \text { is }
$$

\qquad and the residue of $f(z)$ there at is \qquad -
(e) The value of b for which the differential equation $\left(y x^{2 x y}+x\right) \mathrm{d} x+\mathrm{b} x \mathrm{e}^{2 x y} \mathrm{~d} y=0$ is
(f) The initial boundary value problem $\mathrm{u}_{\mathrm{tt}}-\mathrm{c}^{2} \mathrm{u}_{x x}=0,0<x<\mathrm{e}, \mathrm{t}>0$ with u $(0, \mathrm{t})=0=\mathrm{u}(\mathrm{e}, \mathrm{t}), \mathrm{t} \geqslant 0, \mathrm{u}(x, 0)=f(x), 0 \leq x \leq \mathrm{e}$, $\mathrm{u}_{\mathrm{t}}(x, 0)=\mathrm{g}(\mathrm{x}), 0 \leq x \leq \mathrm{e}$ has the solution
$4(x, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{A}_{\mathrm{n}} \sin \frac{\mathrm{n} \pi c \mathrm{t}}{\mathrm{e}}+\mathrm{B}_{\mathrm{n}} \cos \frac{\mathrm{n} \pi c \mathrm{t}}{\mathrm{e}}\right)$
$\sin \frac{\mathrm{n} \pi x}{\mathrm{e}}$, where $\mathrm{A}_{\mathrm{n}}=\ldots$ and
$B_{n}=$ \qquad .
(g) If l^{-1} denotes Laplace Inverse, then l^{-1}

$$
\left[\frac{s}{s^{2}+6 s+11}\right]=
$$

\qquad .
2. (a) Apply Picard's method to find first two $3^{1 / 2}$ approximations to the solution of IVP

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{y} \text { with } y(0)=0
$$

(b) Solve $\mathrm{d} x+x \mathrm{~d} y=\mathrm{e}^{-y} \cdot \sec ^{2} y \mathrm{~d} y$.
3. Using Method of Feroberius, find series solution near $x=0$ of the differential equation
$9 x(1-x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0$.
4. Using Laplace Transforms, solve 7 $\left(\mathrm{D}^{3}+3 \mathrm{D}^{2}+3 \mathrm{D}+1\right) y=x^{2} \mathrm{e}^{-x}$ with $y(0)=1$, $y^{\prime}(0)=0, y^{\prime \prime}(0)=-2$
5. (a) Show that $l\left(t^{n}\right)=\frac{\sqrt{n+1}}{s^{n+1}}, n>-1, s>0 \quad 31 / 2$
(b) Using convolution theorem, evaluate $3^{1 / 2}$

$$
l^{-1}\left\{\frac{1}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+1\right)}\right\}
$$

6. Find the equation of integral surface of the p.d.e.

$$
\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q-2 x z=0
$$

7. Using Cauchy's general principle of convergence, show that the sequence $\left\langle a_{n}\right\rangle$, defined as

$$
a_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \text { does not converge. }
$$

8. (a) Show that the series $1+x+\frac{x^{2}}{\underline{2}}+$ \qquad converges absolutely for all values of x.
(b) Test the series $\sum \frac{\sin (x+n x)}{n(n+1)}$ for uniform $31 / 2$ convergence.
9. Find the half-range cosine series for the function 7 $f(x)=(2 x-1)$ for $0<x<1$.
10. Find the Fourier series to represent odd function 7 $f(x)=x$ from $-\pi$ to π.
11. (a) Find the characteristic function, transfer 3 function and frequency response function of the equation $\left(\mathrm{D}^{3}+1\right) x=f(\mathrm{t})$.
(b) Test the differential equation, 4 $\left(\mathrm{D}^{2}+2 \mathrm{D}+7\right) x=f(\mathrm{t})$, for stability.
12. Using Hurwitz-Routh Criterion for stability, 7 determine the value of ' a ' so that the differential equation whose characteristic function is given by $s^{4}+a s^{3}+6 s^{2}+4 s+1=0$ is stable.
13. Find the deflection $\mathrm{u}(x, \mathrm{t})$ of the vibrating string 7 of length π, ends fixed and $c^{2}=1$ with zero initial velocity and $\mathrm{k} \sin 2 x$ as initial deflection (use the method of separation of variables).
14. (a) Find the value of $\int_{C:|z|=1} e^{z} z^{-2} d z$
(b) Find Taylor series of e^{z} about $z=1$.
15. Using the method of complex integration, 7 evaluate $\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta$.
