B.Tech. Civil (Construction Management)/
 B.Tech. Civil (Water Resources Engineering)
 B.Tech. (Aero space Engineering)

Term-End Examination 01289
June, 2012
ET-101(A) : MATHEMATICS-I
Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is allowed.

1. Answer any five of the following :
(a) If $f(x)=\cos x \quad 0 \leq x<\frac{\pi}{2}$

$$
\begin{array}{ll}
=x-\frac{\pi}{2} & \frac{\pi}{2}<x \leq \pi \\
=1 & x=\frac{\pi}{2}
\end{array}
$$

Discuss the continuity of $\mathrm{f}(x)$ at $x=\pi / 2$
(b) Find $\frac{d y}{d x}$, if $y=(\sin x)^{\cos x}+(\cos x)^{\sin x}$
(c) Evaluate (any one of the following)
(i) $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x}$
(ii) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$
(d) Show that the normal at the point $\theta=\pi / 4$ to the curve

$$
x=3 \cos \theta-\cos ^{3} \theta ; y=3 \sin \theta-\sin ^{3} \theta
$$ passes through the origin.

(e) Calculate the radius and the height of a right circular cylinder of maximum volume which can be cut from a sphere of radius R .
(f) If $x=r \cos \theta, y=r \sin \theta, \mathrm{z}=\mathrm{z}$,
find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$
2. Answer any four of the following :
(a) Evaluate (Any one of the following)
(i) $\int x \sin x^{2} d x$
(ii) $\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x$
(b) Evaluate $\int_{\theta}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x+\sqrt{\cos x}}} d x$
(c) Find the area bounded by :

$$
y^{2}=9 x \text { and } x^{2}=9 y
$$

(d) Calculate $\int_{0}^{10} \frac{d x}{1+x^{2}}$, using Simpson's one - third rule with ten interval.
(e) Solve (any one)
(i) $\frac{d y}{d x}=(4 x+y+1)^{2}$
(ii) $\cos x \frac{d y}{d x}=y \sin x+y^{3} \cos ^{2} x$
(f) If $z=e^{a x+b y}$ and ($a x-b y$), prove that

$$
b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z
$$

3. Answer any four of the following :
$4 \times 4=16$
(a) If $\mathrm{R}=x \hat{i}+y \hat{j}+z \hat{k}$, show that
(i) $\quad \nabla . \mathrm{R}=3$
(ii) $\nabla \times R=0$
(b) Show that the following vector is solenoidal :

$$
\left(-x^{2}+y z\right) \hat{i}+\left(4 y-z^{2} x\right) \hat{j}+(2 x z-4 z) \hat{k}
$$

(c) Find curl (curl A)

$$
\text { Given } \mathrm{A}=x^{2} y \hat{i}+y^{2} z \hat{j}+z^{2} y \hat{k}
$$

(d) Find the total work done in moving a particle in a force field given by
$\mathrm{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$ along the curve $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.
(e) Show that the following vector is irrotational, and find the scalar potential

$$
\mathrm{F}=2 x y \hat{i}+\left(x^{2}+2 y z\right) \hat{j}+\left(y^{2}+1\right) k
$$

(f) Evaluate $\quad \iint$ F. $n d s \quad$ where
$\mathrm{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and s is the surface of the cube bounded by $x=0, x=1, y=0$, $y=1, z=0, z=1$.
4. Answer any six of the following :
$6 \times 3=18$
(a) Show that $\left|\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right|$ is a

Hermitian matrix.
(b) Find the sum and product of the eigen

$$
\text { values of }\left[\begin{array}{ccc}
2 & 3 & -2 \\
-2 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

(c) Express A as the sum of a symmetric and a skew symmetric matrix, where

$$
A=\left[\begin{array}{ccc}
4 & 2 & -3 \\
1 & 3 & -6 \\
-5 & 0 & -7
\end{array}\right]
$$

(d) Verify that $\frac{1}{3}\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is an orthogonal matrix.
(e) Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

(f) Given

$$
3\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
x & 6 \\
-1 & 2 w
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right]
$$

(g) Find the rank of the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 7 \\
3 & 6 & 10
\end{array}\right]
$$

(h) Solve the following equations by Cramer's rule

$$
\begin{aligned}
& x-y+2 z=5 \\
& 3 x+y+z=8 \\
& 2 x-2 y+3 z=7
\end{aligned}
$$

