BICE-007

(BTCSVI / BTECVI / BTELVI) B.Tech. (Degree)

Term-End Examination

June, 2012

BICE-007 : MATHEMATICS-III

Time	e : 3 h	ours Maximum Marks : 70
Note		ll questions are compulsory . Ise of calculator is permitted .
1.	Ans	wer <i>any two</i> of the following : $2x7=14$
	(a)	Show that the polar form of Cauchy -
		Riemann equations are
		$\frac{\partial u}{\partial \mathbf{r}} = \frac{1}{\mathbf{r}} \frac{\partial v}{\partial \theta} ; \frac{\partial v}{\partial \mathbf{r}} = -\frac{1}{\mathbf{r}} \frac{\partial u}{\partial \theta}$
		Deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$.
	(b)	Prove that $\int_C \frac{1}{z-a} dz = 2\pi i$
		where C is the circle $ z-a =r$.
	(c)	Determine the poles of the function
		$f(z) = \frac{z^2}{(z-1)^2(z+2)}$
		and the residue at each pole.

P.T.O.

2. Answer *any two* of the following :

(a) Calculate the first four moments of the following distribution about the mean.

\mathbf{x} :	0	1	2	3	4	5	6	7	8
f:	1	8	28	56	70	56	28	8	1

Also evaluate β_1 and β_2 .

(b) Find the correlation co-efficient between x and y for the given values. Find also the two regression lines.

x :	1	2	3	4	5	6	7	8	9	10
y :	10	12	16	28	25	36	41	49	40	50

(c) The two regression equations of the variables x and y are :

x = 19.13 - 0.87 y, and

y = 11.64 - 0.50 x

Find :

- (i) mean of x's
- (ii) mean of y's, and
- (iii) the correlation co-efficient between x and y.

BICE-007

2x7=14

3. Answer *any two* of the following :

- (a) Out of 800 families with 5 children each, how many would you expect to have :
 - (i) 3 boys (ii) 5 girls
 - (iii) either 2 or 3 boys ?

Assume equal probabilities for boys and girls.

- (b) In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10, use Poisson distribution to calculate the approximate number of packets containing :
 - (i) no defective,
 - (ii) one defective, and
 - (iii) two defective blades respectively in a consignment of 10,000 packets.
- (c) A random sample of 10 boys had the following I.Q :

70, 120, 110, 101, 88, 83, 95, 98, 107, 100

Do these data support the assumption of a population mean I.Q of 100 (at 5% level of significance) ?

BICE-007

P.T.O.

4. Answer any two of the following :

- (a) Find a root of the equation $x^3 4x 9 = 0$, using the bisection method in four stages.
- (b) Using Regula-falsi method, compute the real root of the following equation $x e^{x} 2 = 0$ correct to three decimal places.
- (c) Find by Newton-Raphson's method, a root of the following equation $x^3-2x-5=0$, correct to 3 decimal places.
- 5. Answer *any two* of the following : 2x7=14
 - (a) Solve, by Jacobi's iteration method, the equations :

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

(b) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$ by using Simpson's

 $\frac{1}{3}$ rule. (Take h = 1).

(c) Using Runge - Kutta method of order 4,

find y (0.2) given that $\frac{dy}{dx} = 3x + \frac{y}{2}$, y (0) = 1, taking h = 0.1

BICE-007

4