B.TECH. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
June, 2012
BICS-009 : LOGIC DESIGN
Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note : Attempt any seven questions.
All questions carry equal marks.

1. (a) Implement the given boolean function using 5 only NAND gates
$\mathrm{F}=\mathrm{A}(\mathrm{CD}+\mathrm{B})+\mathrm{B} \overline{\mathrm{C}}$
(b) Simplify and find the minimal SOP and POS
circuit for the boolean function :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(6,8,9,10,11,12,13$, 14, 15)
2. (a) Simplify the following Boolean function 6 using Quine Mc Clusky method $\mathrm{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\operatorname{\sum m}(0,5,7,8,9,10,11,14,15)$
(b) Realize $\mathrm{Y}=\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{ABC}$ using an 8:1 $\quad 4$ multiplexer.
3. (a) Explain programmable Array Logic. 5
(b) Design a 1 bit binary magnitude 5 comparator.
4. (a) Add +39 and -22 in 2 's complement 4 method.
(b) Design a full adder using two half adders.

6
5. (a) Explain Schmitt Trigger transfer 5 characteristic.
(b) Convert a T - flipflop to D - flipflop.

5
6. (a) For the given state diagram, draw the 6 clocked sequential circuit using T-flipflops.

(b) Explain serial in serial out shift register.
7. (a) Design a synchronous 3 bit binary up counter using T-flipflop.
(b) Explain a 4 bit ring counter using D - flipflop. 4
8. (a) What are the problems faced in asynchronous 5 sequential circuits ?
(b) An asynchronous sequential circuit is 5 described by the excitation function :

$$
\begin{aligned}
& y=x_{1} \bar{x}_{2}+x_{1} y \text { and output function } \\
& z=x_{1} x_{2} y
\end{aligned}
$$

(i) Draw the logic diagram of circuit.
(ii) Derive the transition table and output map.
9. Write short notes on any two:
(a) A/D converter - counter method
(b) Dual slope A/D converter
(c) D/A converter using binary ladder
10. Write short notes on any two: 10
(a) Open collector TTL NAND gate
(b) 74COO CMOS NAND gate
(c) MOSFET as a switching circuit.

