B.Tech. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
June, 2012

BICS-008 : DISCRETE MATHS STRUCTURE

Time : 3 Hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. All the questions are to be answered in english only.

1. (a) If R be a relation in the set of integer.
Z defined by

$$
\begin{aligned}
\mathrm{R}= & \{(x, y): x \in z, y \in z \text { and }(x-y) \text { is multiple } \\
& \text { of } 3\}
\end{aligned}
$$

Prove that R is an equivalence relation.
(b) Let $A=\{1,2,3\}$ and $B=\{a, b, c, d\}$ Let $R \quad 5$ be the relation from A to B with Boolean Matrices
$\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
Find Boolean Matrices of R^{-1} and R^{1}.

2. Define Big O Notation. Show that $\mathrm{f}(x)=x^{2}+2 x+1$ is $\mathrm{O}\left(x^{2}\right)$

3. Define a group. Describe properties of a group. $\mathbf{1 0}$ Show that the set $\{1,2,3,4,5\}$ is not a group under multiplication modulo 6 .
4. (a) Find the product of the following two 5 permutations and show that it is not commutative.
$\mathrm{f}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$ and $\mathrm{g}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$
(b) State and prove Lagrange's Theorem.

5
5. (a) Show that the relation ' \leq ' is a partial 5 ordering on the set of integers Z.
(b) Show that the lattice $\left(\mathrm{L}^{3}, \leq_{3}\right)$ of 3 tuples of 5 0 and 1 is complemented.
6. (a) Prove that the set \{NAND\} is a functionally 5 complete set of operations.
(b) Using Karnaugh map simplify the 5 expression $A B^{\prime}+A^{\prime} B^{\prime}$.
7. (a) State the converse, inverse and contra positive of the statement "If it rains then the crops will grow".
(b) Verify that the proposition $\sim(p \wedge q) \vee q$ is a 4 tautology.
8. Prove the validity of the following argument "If I get the job and work hard; then I will get promoted. If I get promoted; then I will be happy. I will not be happy. Therefore, either I will not get the job or I will not work hard".
9. Solve the recurrence relation
$a_{n}-9 a_{n-1}+20 a_{n-2}=0$ where
$a_{0}=-3, a_{1}=-10$.
10. Write short notes on any two of the following: $5+5$
(a) Euler and Hamiltonian graph
(b) Pigeon hole Principle
(c) Tree and Binary search tree

