Time: 3 Hours

BAS-017

Maximum Marks: 70

P.T.O.

B.TECH. IN AEROSPACE ENGINEERING (BTAE)

Term-End Examination June, 2012

BAS-017: FLIGHT MECHANICS

Note	:	(1) Answer any five que	estions.
		(2) Use of non programm permitted.	nable calculator is
1.		ate the following states	nents with brief
	(a)	Two aircrafts turn through the same time, but radinal aircraft is twice that of the So both the aircrafts have bank.	us of turn of one the other aircraft.
	(b)	The forward CG limit decided by stability consi	
	(c)	Measurement of elevator versus co-efficient of lift during the flight test at var to estimate stick-fixed ne	C _L is carried out rious CG positions
	(d)	The stick-fixed manoe forward of stick-fixed ne	-

1

- (e) For elevator hinge moment coefficient 2 $C_H = b_1\alpha + b_2\eta + b_3\beta$, the coefficient b_1 is always positive, so also b_2 and b_3 .
- (f) For a given aircraft, the angle of glide is determined solely by its lift-drag ratio and is independent of its weight.
- (g) To fly in a steep turn it is necessary to fly fast because the stalling speed is high.
- 2. (a) Explain the purpose of aerodynamic 7 balancing of a control surface.
 - (b) Explain the purpose of mass balancing of a 7 control surface.
- 3. (a) The following data is given for an aircraft: 7
 - (i) aircraft speed 100 m/s
 - (ii) wing area 1.5 m^2
 - (iii) chord 0.15 m
 - (iv) Moment with respect to CG when the lift is zero 12.4 N/m

The aircraft experienced a lift of 3675 N and moment 20.67 N-m when pitched at a different angle of attack.

Calculate the value of moment coefficient about the aerodynamic center and location of aerodynamic center from leading edge. Assume sea-level conditions.

(b)	A horizontal tail without elevator is added				
	to the above aircraft. The distance from				
	airplane's center of gravity to the tail's				
	aerodynamic center is 1.0 m. The area of				
	tail is 0.4 m ² , and the tail setting angle is 2°.				
	The lift slope of the tail is 0-12/degree,				
	$\epsilon_0 = 0$, an $\frac{\partial \epsilon}{\partial \alpha} = 0.42$. If the absolute angle				
	of attack is 5° and the lift at this angle of				
	attack is 4134 N, calculate the moment of				
	aircraft about center of gravity. Does the				
	aircraft possess longitudinal static stability?				

- 4. (a) Explain with figures how the neutral point 7 for Stick Fixed flight of aircraft is determined.
 - (b) What is weather cock stability? What is 7 the purpose of vertical tail?
- 5. (a) What is directional stability in an aircraft? 7
 How is it achieved? Explain with a graph
 the required condition for achieving
 directional stability in an aircraft.
 - (b) Discuss the factors to be considered while 7 designing a rudder for an aircraft.
- 6. (a) What is adverse yaw and asymmetric 5 flight?
 - (b) What is the effect of dihedral and swept 5 back wings on roll stability?

BAS-017

110

- (c) What is aerodynamic and mass balancing and how is it achieved in an aircraft?
- 7. (a) Explain the concept of longitudinal stability 7 for wing and tail combination in an aircraft.
 - (b) Explain with $C_m \alpha$ graph, the following 7 terms for an aircraft.
 - (i) stable
 - (ii) unstable
 - (iii) neutrally stable
- 8. Explain in detail the concepts of stick fixed and 14 stick free longitudinal stability.