B.TECH. IN AEROSPACE ENGINEERING

(BTAE)

Term-End Examination
June, 2012
BAS-015 : Aerodynamics - II
Time : $\mathbf{3}$ Hours
Maximum Marks : 70
Note: (1) Question No. 1 is compulsory.
(2) Attempt any six from question No. 2-9.

Attempt any five of the following :
$5 \times 2=10$

1. (a) Write the one - dimensional energy and momentum equations for an adiabatic compressible steady flow.
(b) Define De Laval Nozzle. Also describe with figure an under - expanded Nozzle.
(c) Why a Golf ball is dimpled ?
(d) What is Helmholtz's theorem?
(e) An air plane is flying at 3.0 Mach at an altitude where the pressure and temperature are respectively 0.5 atm and $-20^{\circ} \mathrm{C}$. Calculate the pressure and temperature at the leading edge of the wing.
(f) Air flows through a rough constant area pipe with inside diameter 0.12 m . The inlet flow conditions are $\mathrm{M}_{1}=0.44$ and $\mathrm{P}_{1}=1 \mathrm{~atm}$. Assuming friction constant $f=0.005$, calculate the minimum length of pipe required to make the flow sonic. Also calculate pressure at exit.
2. (a) Derive relationship for the ratio of stagnation pressure to static pressure and Mach number for an isentropic flow. Derive similar relations for temperature and density ratios.
(b) Air flows isentropically through a divergent passage of inlet area $7 \mathrm{~cm}^{2}$. If inlet conditions are $\mathrm{M}_{1}=1.4, \mathrm{P}_{1}=1 \mathrm{~atm}, \mathrm{~T}_{1}=27^{\circ} \mathrm{C}$, and exit Mach No. $\mathrm{M}_{2}=3.0$. Compute $1+2+2$
(i) the mass flow rate
(ii) exit pressure and
(iii) exit Area
3. (a) A thin plate of length 2 m and width 1 m is moving in air along it's length at a speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate the total skin friction drag on the plate assuming seal level conditions.
(b) Write a short note on Laminar flow airfoils
4. (a) Derive the fundamental equation of the 4 Prandtl's lifting line theory.
(b) Show that for an elliptical lift distribution, 6 induced drag coefficient, $C_{D i}=C_{L}{ }^{2} / \pi A R$, where C_{L} is lift coefficient and $A R$ is aspect ratio of wing.
5. (a) Sketch the shock polar for $M=3.0$ depicting Mach Nos, for no flow deplection and $\theta_{\text {max }}$. Explain the method of finding the Mach no. 5. and shock angles for a turning angle of 5 degree
(b) Write a short note on Expansion Hodograph 4
6. (a) Draw a Mollier diagram for flow through a 4 constant area duct with heat addition.
(b) Air enters a constant area duct of length 2 m at $\mathrm{M}_{1}=0.2, \mathrm{P}_{1}=1 \mathrm{~atm}$ and $\mathrm{T}_{1}=273 \mathrm{~K}$. Inside the duct, the heat added per unit mass per unit length is $5 \times 10^{5} \mathrm{Jkg} / \mathrm{m}$. Calculate the flow properties $\mathrm{M}_{2}, \mathrm{P}_{2}, \mathrm{~T}_{2}, \mathrm{P}_{02}, \mathrm{~T}_{02}$, and P_{2} at exit.
7. (a) Explain with diagram, the features and 5 method of swinging a cricket ball.
(b) Write a note on boundary layer separation.

How it is different for laminar and turbulent flows?
8. Consider a double wedge air foil having chord10 $\mathrm{C}=2 \mathrm{~m}$ and half angle $10^{\circ} \mathrm{kept}$ at an angle of attack of 5° in supersonic stream of Mach number 2.5. Evaluate lift and Drag of this airfoil considering sea level conditions

9. (a) Derive an expression connecting area and velocity variations with Mach number for a one dimensional compressible flow.
(b) Sketch the variation of Mach number, 4 pressure ratio $\mathrm{P} / \mathrm{P}_{0}$ and Temperature ratio $\mathrm{T} / \mathrm{T}_{0}$ along a De - Laval nozzle for an Isen tropic flow. Mark the Important values.

