No.	of	Printed	Pages	:	4	
-----	----	---------	-------	---	---	--

B.TECH. IN AEROSPACE ENGINEERING (BTAE) 00955 **Term-End Examination** June, 2012 BAS-015 : Aerodynamics - II Time : 3 Hours Maximum Marks : 70 (1) Question No. 1 is compulsory. Note : Attempt any six from question No. 2 - 9. (2) Attempt any five of the following : 5x2 = 10Write the one - dimensional energy and 1. (a) momentum equations for an adiabatic compressible steady flow. (b) Define De Laval Nozzle. Also describe with figure an under - expanded Nozzle. Why a Golf ball is dimpled ? (c) (d) What is Helmholtz's theorem ? (e) An air plane is flying at 3.0 Mach at an altitude where the pressure and temperature are respectively 0.5 atm and -20° C. Calculate the pressure and temperature at the leading edge of the wing. (f) Air flows through a rough constant area pipe with inside diameter 0.12 m. The inlet $M_1 = 0.44$ conditions are and flow $P_1 = 1$ atm. Assuming friction constant f = 0.005, calculate the minimum length of

f = 0.005, calculate the minimum length of pipe required to make the flow sonic. Also calculate pressure at exit.

BAS-015

BAS-015

- (a) Derive relationship for the ratio of stagnation pressure to static pressure and Mach number for an isentropic flow. Derive similar relations for temperature and density ratios.
 - (b) Air flows isentropically through a divergent passage of inlet area 7 cm². If inlet conditions are $M_1 = 1.4$, $P_1 = 1$ atm, $T_1 = 27^\circ$ C, and exit Mach No. $M_2 = 3.0$. Compute 1+2+2

5

3

- (i) the mass flow rate
- (ii) exit pressure and
- (iii) exit Area
- (a) A thin plate of length 2 m and width 1m is 7 moving in air along it's length at a speed of 10 m/s. Calculate the total skin friction drag on the plate assuming seal level conditions.
 - (b) Write a short note on Laminar flow airfoils
- 4. (a) Derive the fundamental equation of the 4 Prandtl's lifting line theory.
 - (b) Show that for an elliptical lift distribution, 6 induced drag coefficient, $C_{Di} = C_L^2 / \pi AR$, where C_L is lift coefficient and AR is aspect ratio of wing.

BAS-015

2

- 5. (a) Sketch the shock polar for M = 3.0 depicting 6 Mach Nos, for no flow deplection and θ_{max} . Explain the method of finding the Mach no. 5. and shock angles for a turning angle of 5 degree
 - (b) Write a short note on Expansion Hodograph 4
- 6. (a) Draw a Mollier diagram for flow through a 4 constant area duct with heat addition.
 - (b) Air enters a constant area duct of length 2 m at $M_1 = 0.2$, $P_1 = 1$ atm and $T_1 = 273$ K. Inside the duct, the heat added per unit mass per unit length is 5×10^5 Jkg/m. Calculate the flow properties M_2 , P_2 , T_2 , P_{02} , T_{02} , and P_2 at exit.
- 7. (a) Explain with diagram, the features and 5 method of swinging a cricket ball.
 - (b) Write a note on boundary layer separation. 5How it is different for laminar and turbulent flows ?
- 8. Consider a double wedge air foil having chord 10 C = 2m and half angle 10° kept at an angle of attack of 5° in supersonic stream of Mach number 2.5. Evaluate lift and Drag of this airfoil considering sea level conditions

$$V_{\alpha}$$

BAS-015

P.T.O.

6

3

- 9. (a) Derive an expression connecting area and 6 velocity variations with Mach number for a one dimensional compressible flow.
 - (b) Sketch the variation of Mach number, **4** pressure ratio P/P_0 and Temperature ratio T/T_0 along a De Laval nozzle for an Isen tropic flow. Mark the Important values.