No. of Printed Pages : 5

BAS-002

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination

June, 2012

00239

BAS-002 : APPLIED CHEMISTRY

Time : 3 hours

Maximum Marks : 70

Note : Answer seven questions in all. Question number 1 is compulsory. Use of calculator is allowed.

- 1. Define *any five* of the following : 5x2=10
 - (a) Hess's Law
 - (b) Hund's rule
 - (c) Schottky defect
 - (d) Kohlraush law
 - (e) Free radical with an example
 - (f) Vulcanisation of isoprene
 - (g) Fuel cell
- 2. Answer *any two* of the following :
 - (a) An alkane has molecular weight of 72 and 5
 monochlorination produces one compound only. What is the structure ?
 - (b) Draw and explain the nature of 5 conductomeric titration curve that you will get when NaOH is added to acetic acid.

BAS-002

- (c) What is the difference between thermosetting and thermoplastic polymers ? Give one example for each.
- 3. (a) The reaction

$$NH_2CN(s) + \frac{3}{2}O_2(g) \rightarrow N_2(g) + CO_2(g) + H_2O(l)$$

was carried out in a bomb calorimeter. The heat released was 743 kJmol⁻¹. Calculate the value of Δ H for the reaction at 300 K.

$$(R = 8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})$$

(b) $C\dot{u}$ is not stable and undergoes 5 disproportionation reaction. Calculate \dot{E} for the disproportionation of Cu⁺.

$$\left(E_{Cu^{2+}/Cu^{+}}^{\circ} = 0.163 \text{ V}; E_{Cu^{+}/Cu}^{\circ} = 0.53 \text{ V}\right)$$

4. (a) The addition of 3g of a substance to 100 g CCl_4 raiser the boiling point of CCl_4 by 0.6°C. If K_b for CCl_4 is 5.03 K kg mol⁻¹.

- (i) Calculate the freezing point depression
- (ii) Calculate the relative lowering of vapour pressure

(At. wt. :
$$Cl = 35.5$$
; $C = 12$)

BAS-002

5

5

5

(b) Chromium metal crystallises with a BCC lattice. The length of the unit cell edge is found to be 287 pm. Calculate :
(i) the atomic radius and
(ii) density of chromium in g/cm³.
(At.wt. : Cr = 51.99 Av. No. = 6.023 × 10²³ mol⁻¹)

5

2

- 5. (a) How will you account for the ortho and para 5 influence of CH_3 group in toluene ?
 - (b) Arrange the following carbonium ions in 3 their decreasing order of stability.
 - (i) $CH_3 C^+H_2$ (ii) $(CH_3)_2C^+H$
 - (iii) $(CH_3)_3C^+$ (iv) C^+H_3
 - (c) Teflon is an example of :
 - (i) fiber
 - (ii) elastomers
 - (iii) thermoplastic polymer
 - (iv) thermosetting polymer
 - 6. (a) Draw PV Vs. P curve for a fixed mass of an 4 ideal gas at two different temperatures, T_1 and T_2 ($T_2 > T_1$).
 - (b) 3.26 g of zinc on being treated with acid 4 produces 1.12 lit. of hydrogen gas at N.T.P.
 Find out the relative equivalent weight of zinc.
 - (c) Why ammonia is not dried by calcium 2 chloride but is dried by quick lime ?

BAS-002

3

 (a) Calculate the equivalent and molar conductance of aqueous BaSO₄ solution at infinite dilution.

Given : $\wedge_{equ.}^{\infty}$ for $\frac{1}{2}$ Ba (NO₃)₂=135.04 × 10⁻⁴ Ω^{-1} m² eq.⁻¹ $\wedge_{equ.}^{\infty}$ for $\frac{1}{2}$ H₂SO₄ = 429.6×10⁻⁴ Ω^{-1} m² eq.⁻¹

and $\wedge_{equ.}^{\infty}$ for HNO₃ = 421.24×10⁻⁴ Ω^{-1} m² eq.⁻¹

- (b) The bond enthalpies of H-H, Cl-Cl and 5 H-Cl are 435, 243 and 431 kJ mol⁻¹ respectively. Calculate the enthalpy of formation of HCl (g).
- 8. (a) Subtance A reacts according to first order 4 rate law with $k=5.0 \times 10^{-5} \text{ s}^{-1}$.
 - (i) If initial concentration of A is 1.0 M, What is the initial rate and
 - (ii) rate after 1.0 hour ?

а

4

(b) Which curve represents a first order **3** reaction ?

(i) ^t_{1/2}

P.T.O.

- (c) What are the differences between 3 molecularity and order of a reaction ? Mention atleast three differences.
- 9. (a) What is Nernst equation ? How it helps in 4 determining the equilibrium constant for a reaction : $aA + bB \rightleftharpoons cC + dD$.

~

(b) Calculate
$$\Delta E$$
 and K for the reaction : 4
2 Fe³⁺ + 3I⁻ = 2 Fe²⁺ + I_3^-
Given : (i) Fe³⁺ + e⁻ = Fe²⁺ ; E° = 0.77/V

(c) For endothermic reaction where ΔH 2 represents the enthalpy of the reaction in kJ mol⁻¹, the minimum, value for the energy of activation will be :

(ii) $I_3^- + 2 e^- = 3I^-$; $E^\circ = 0.536$ V

- (i) less than ΔH (ii) zero
- (iii) greater than ΔH (iv) equal to ΔH

BAS-002

5