B.TECH. (AEROSPACE ENGINEERING)

(BTAE)
Term-End Examination
June, 2012
00239

BAS-002 : APPLIED CHEMISTRY

Time : 3 hours
Maximum Marks : 70
Note: Answer seven questions in all. Question number 1 is compulsory. Use of calculator is allowed.

1. Define any five of the following: $\mathbf{5 x 2}=\mathbf{1 0}$
(a) Hess's Law
(b) Hund's rule
(c) Schottky defect
(d) Kohlraush law
(e) Free radical with an example
(f) Vulcanisation of isoprene
(g) Fuel cell
2. Answer any two of the following:
(a) An alkane has molecular weight of 72 and monochlorination produces one compound only. What is the structure ?
(b) Draw and explain the nature of 5 conductomeric titration curve that you will get when NaOH is added to acetic acid.
(c) What is the difference between thermosetting and thermoplastic polymers?
Give one example for each.
3. (a) The reaction 5
$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ was carried out in a bomb calorimeter. The heat released was $743 \mathrm{kJmol}^{-1}$. Calculate the value of $\Delta \mathrm{H}$ for the reaction at 300 K . $\left(\mathrm{R}=8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right.$)
(b) $\mathrm{C} \stackrel{+}{\mathrm{u}}$ is not stable and undergoes 5 disproportionation reaction. Calculate E° for the disproportionation of Cu^{+}.

$$
\left(\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}}^{\circ}=0.163 \mathrm{~V} ; \mathrm{E}_{\mathrm{Cu}^{+} / \mathrm{Cu}}^{\circ}=0.53 \mathrm{~V}\right)
$$

4. (a) The addition of 3 g of a substance to 100 g
CCl_{4} raiser the boiling point of CCl_{4} by $0.6^{\circ} \mathrm{C}$. If K_{b} for CCl_{4} is $5.03 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
(i) Calculate the freezing point depression
(ii) Calculate the relative lowering of vapour pressure
(At. wt. : $\mathrm{Cl}=35.5 ; \mathrm{C}=12$)
(b) Chromium metal crystallises with a BCC lattice. The length of the unit cell edge is found to be 287 pm . Calculate :
(i) the atomic radius and
(ii) density of chromium in $\mathrm{g} / \mathrm{cm}^{3}$.
(At.wt. : $\mathrm{Cr}=51.99 \mathrm{Av}$. No. $=6.023 \times 10^{23}$ mol^{-1})
5. (a) How will you account for the ortho and para influence of CH_{3} group in toluene?
(b) Arrange the following carbonium ions in their decreasing order of stability.
(i) $\mathrm{CH}_{3}-\mathrm{C}^{+} \mathrm{H}_{2}$
(ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{+} \mathrm{H}$
(iii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
(iv) $\mathrm{C}^{+} \mathrm{H}_{3}$
(c) Teflon is an example of :
(i) fiber
(ii) elastomers
(iii) thermoplastic polymer
(iv) thermosetting polymer
6. (a) Draw PV Vs. P curve for a fixed mass of an ideal gas at two different temperatures, T_{1} and $T_{2}\left(T_{2}>T_{1}\right)$.
(b) 3.26 g of zinc on being treated with acid produces 1.12 lit. of hydrogen gas at N.T.P. Find out the relative equivalent weight of zinc.
(c) Why ammonia is not dried by calcium 2 chloride but is dried by quick lime?
7. (a) Calculate the equivalent and molar conductance of aqueous BaSO_{4} solution at infinite dilution.
Given : $\wedge_{\text {equ. }}^{\infty}$ for $\frac{1}{2} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=135.04 \times 10^{-4} \Omega^{-1} \mathrm{~m}^{2} \mathrm{eq.}^{-1}$

$$
\wedge_{\text {equ. }}^{\infty} \text { for } \frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}=429.6 \times 10^{-4} \Omega^{-1} \mathrm{~m}^{2} \mathrm{eq.}^{-1}
$$

and $\wedge_{\text {equ. }}^{\infty}$ for $\mathrm{HNO}_{3}=421.24 \times 10^{-4} \Omega^{-1} \mathrm{~m}^{2}$ eq. ${ }^{-1}$
(b) The bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and
$\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$.
8. (a) Subtance A reacts according to first order 4 rate law with $\mathrm{k}=5.0 \times 10^{-5} \mathrm{~s}^{-1}$.
(i) If initial concentration of A is 1.0 M , What is the initial rate and
(ii) rate after 1.0 hour ?
(b) Which curve represents a first order reaction?
(i)

(ii)

(iii)

P.T.O.
(c) What are the differences between molecularity and order of a reaction ? Mention atleast three differences.
9. (a) What is Nernst equation? How it helps in determining the equilibrium constant for a reaction : $a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$.
(b) Calculate ΔE° and K for the reaction:
$2 \mathrm{Fe}^{3+}+3 \mathrm{I}^{-}=2 \mathrm{Fe}^{2+}+\mathrm{I}_{3}^{-}$
Given: (i) $\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} ; \mathrm{E}^{\circ}=0.77 / \mathrm{V}$
(ii) $\mathrm{I}_{3}^{-}+2 \mathrm{e}^{-}=3 \mathrm{I}^{-} ; \mathrm{E}^{\circ}=0.536 \mathrm{~V}$
(c) For endothermic reaction where ΔH represents the enthalpy of the reaction in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$, the minimum, value for the energy of activation will be :
(i) less than $\Delta \mathrm{H}$
(ii) zero
(iii) greater than $\Delta \mathrm{H}$ (iv) equal to $\Delta \mathrm{H}$

