BACHELOR OF ARCHITECTURE

IC Term-End Examination ∞ June, 2012 ○ BAB 044 • THEORY OF STRUCTURE

BAR-044 : THEORY OF STRUCTURES-V

Time : 3 hours		Maximum Marks : 70
Note :	Attempt any four questions.	All questions carry equal
	marks. Use of calculator	r and IS : 456 code is
	permitted .	

- 1. Determine moment of resistance of a beam of $17\frac{1}{2}$ rectangular section $b \times d = 350 \times 500$ mm reinforced with $4\phi 20$. Use M20 concrete and Fe 415 steel. Assume nominal cover of 20mm and shear reinforcement of 8ϕ .
- 2. Determine areas of tensile as well as compression 17½ reinforcement for a doubly reinforced section of b×d = 375×500mm applied with a factored moment of 300 kN^{-m}. Use M25 concrete and Fe 415 steel and assume effective cover of 50mm both for tensile as well as compression reinforcement.
- 3. Design a roof slab simply supported on all its four $17\frac{1}{2}$ edges of effective span $3m \times 7m$. The top of the slab is covered with 100mm lime terrace. Imposed load may be taken as 1.5 kN/m^2 . Take M20 concrete and Fe 415 steel. Nominal cover may be taken as 20mm.

BAR-044

- Design longitudinal reinforcement for a circular 17½ column of diameter 350 mm with lateral ties for a factored load of 1800 kN and effective length 2.75m. Take M20 concrete and Fe 415 steel.
- 5. Determine the shear reinforcement in the form of 17½ vertical stirrups of $\phi 6$ for a rectangular cross section of $b \times d = 250 \times 450$, reinforced with $4\phi 20$ steel to resist 100 kN shear force. Use M25 concrete, Fe 415 for main reinforcement and Fe 250 for transverse reinforcement.
- 6. Determine the depth of a rectangular footing for 17½ a superimposed load of 1000 kN under a column of size 600mm × 400mm. The safe bearing capacity of soil is 250 kN/m². Use M 25 concrete and Fe 415 steel.
- 7. (a) Define bond stress and discuss the **4** mechanism of bond between concrete and reinforcement.
 - (b) Define different types of bond with neat **4** sketches.
 - (c) What are the objectives of earth quake 4 resistant design of reinforced concrete structures ?
 - (d) What is shear wall ? How a shear wall is 5¹/₂ different from an ordinary wall with regard to function, loading and design ?

BAR-044

2