# BACHELOR OF ARCHITECTURE 

Term-End Examination<br>June, 2012

## BAR-024 : THEORY OF STRUCTURE- III

Time : 3 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four questions from the remaining questions. Use of calculator is permitted.

1. Choose the most appropriate option in each questions:
(a) For a simply supported beam with central load, the BM will be maximum at the
$\qquad$ (supports / centre / $1 / 4^{\text {th }}$ of the span)
(b) For a simply supported beam carrying udl of $W \mathrm{kN}$ on its entire length L , the maximum BM will be equal to $\qquad$ .

$$
\left(\frac{W L}{4} / \frac{W L}{6} / \frac{W L}{8}\right)
$$

(c) If a beam of unifom section is subjected throughout its length to a uniform bending moment, it will bend to a $\qquad$ arc. (parabolic / circular / semi-parabolic)
(d) In a three hinged arch, the BM will be zero at $\qquad$ .
(right hinge / left hinge / all the three hinges)
(e) Ties are load carrying members of a frame, which are subjected to axial $\qquad$ loads. (tension / compression / torsinal)
(f) The CG of a quadrant of a circle lies along its central radius at a distance of $\qquad$ R. ( $0.2 / 0.4 / 0.6$ )
(g) MI of a triangular section (base $b$, height $h$ ) about an axis through its CG and parallel to the base is $\qquad$ .

$$
\left(\frac{b h^{3}}{36} / \frac{b h^{3}}{12} / \frac{b h^{3}}{4}\right)
$$

2. (a) Draw the SFD and BMD for the beam shown in Figure 1.


Figure - 1
(b) Differentiate between a point load and a 7 distributed load.
3. (a) Explain law of parallelogram of forces. 7
(b) What do you understand by truss analysis? 7 Explain the assumptions on which the primary analysis of a plane truss is based.
4. (a) Explain the concept of CG. Specify its uses 7 in engineering applications.
(b) What do you understand by effective length 7 of a column? How can it affect the ultimate load for a long column ?
5. (a) Determine the MI of a T shaped area about 7 its centroidal axis as shown in Figure 2 (dimensions are in mm ).


Figure - 2

> (b) State various empirical formulae for 7 estimating the buckling load of columns.
6. (a) Discuss horizontal shear stress and its variations across a cross section of a beam.
(b) State the assumptions made in the theory 7 of composite sections.
7. Write short notes on any four of the following :
(a) Compound columns. $4 \times 31 / 2=14$
(b) Coplanar forces.
(c) Properties of couples.
(d) Pure bending stress.
(e) Short and long column.

