MCSE-004

MCA (Revised)

Term-End Examination 07337

June, 2012

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks : 100

- Note: Question No. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.
- If 0.333 is the approximate value of 1/3, find
 absolute, relative and percentage error.
 - (b) Determine the number of iterations required 5 to obtain the smallest positive root of $x^3 - 2x - 5 = 0$ correct up to two decimal places.
 - (c) Solve x + 2y + z = 3

2x + 3y + 3z = 10

3x - y + 2z = 13

by Gauss Elimination Method.

(d) Find the value of $\Delta \tan^{-1}x$, the interval of **2** differencing being h.

MCSE-004

1

P.T.O.

5

(e) A table of x Vs. f(x) is given below. Find the value of f(x) at x=4, use Lagrange Interpolation formula.

- (f) Find the value of $\int_{0}^{e^{-dx}} dx$, taking n=6, 5 correct to five significant figures using Simpson's $\frac{1}{3}$ rule
- (g) An individual's IQ score has a Normal 5 distribution N (100, 15²). Find the probability that an individual IQ score is between 91 and 121.
- (h) Following data is given for marks in subject 7A and B of a certain examination.

	Subject A	Subject B
Mean Marks	36	85
Standard Deviation	11	8

Coefficient of correlation between A and $B = \pm 0.66$

- Determine the two equations of regression.
- (ii) Calculate the expected marks in A corresponding to 75 marks obtained in B.
- Write the probability distribution formula 3
 for Binomial distribution, Poisson
 distribution and Normal distribution.

MCSE-004

5

- 2. (a) Find an approximate value of the root of the equation $x^3 + x 1 = 0$, near x = 1. Using the method of Regula-Falsi, twice.
 - (b) Solve following system of equations by using 6
 Gauss seidel iteration method, perform two iterations

5

8x - 3y + 2z = 20 6x + 3y + 12z = 354x + 11y - z = 33

- (c) Solve the following system of equations by 6 using LU decomposition method x+y=2; 2x+3y=5
- (d) For x = 0.5555 E1 ; y = 0.4545 E1 and 3 z = 0.4535 E1, prove that $x (y-z) \neq xy - xz$
- 3. (a) A polynomial passes through the points 5 (1, -1), (2, -1), (3, 1) and (4, 5). Find the polynomial using Newton's forward interpolation formula.
 - (b) Calculate the value of the integral 5
 5.2 1 log x d x

 by using : (i) Simpson's ³/₈ rule
 (ii) Simpson's ¹/₃ rule

 (c) Using Runge Kutta method find y (0.2) for 10

the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$; y(0) = 1. Take h = 0.2.

MCSE-004

- 4. (a) The tangent of the angle between the lines of regression y on x and x on y is 0.6 and $\sigma_x = \frac{1}{2}\sigma_y$. Find r_{xy} .
 - (b) Compute R and R² for the data given below :

Sample Size (i)	12	21	15	1	24	
хi	0.96	1.28	1.65	1.84	2.35	
y i	138	160	178	190	210	
\hat{y}_{i} i	138					
^ ei	0					

regression equation y = 90 + 50x is used to fill the table where $\hat{e} = yi - \hat{y}i$.

- (c) If a bank receives on an average $\lambda = 6$ bad 5 cheques per day. What is the probability that it will receive 4 bad cheques on any given day ?
- (d) What do you mean by term "Goodness to 5 fit test" ? What for the said test is required?
- 5. (a) Solve the following system of equations by 7
 Jacobi Method, determine the results for three approximations.

3x + 4y + 15z = 54.8

x + 12y + 3z = 39.66

10x + y - 2z = 7.74

MCSE-004

4

5

5

(b) Evaluate the integral $I = \int_{0}^{1} \frac{dx}{1+x}$ by using composite trapezoidal rule with 2 and 4 subintervals.

8

(c) A book contains 100 misprints distributed 5
 randomly throughout its 100 pages. What
 is the probability that a page observed at
 random contains atleast two misprints.