MCA (Revised)

Term-End Examination
June, 2012

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) If 0.333 is the approximate value of $1 / 3$, find 3 absolute, relative and percentage error.
(b) Determine the number of iterations required 5 to obtain the smallest positive root of $x^{3}-2 x-5=0$ correct upto two decimal places.
(c) Solve $x+2 y+z=3$ 5

$$
\begin{aligned}
& 2 x+3 y+3 z=10 \\
& 3 x-y+2 z=13
\end{aligned}
$$

by Gauss Elimination Method.
(d) Find the value of $\Delta \tan ^{-1} x$, the interval of 2 differencing being h.
(e) A table of x Vs. $f(x)$ is given below. Find the value of $f(x)$ at $x=4$, use Lagrange Interpolation formula.

$x \rightarrow 1.5$	3	6
$f(x) \rightarrow-0.25$	2	20

$$
0.6
$$

(f) Find the value of $\int_{0}^{0.6} \mathrm{e}^{x} \mathrm{~d} x$, taking $\mathrm{n}=6, \quad 5$ correct to five significant figures using Simpson's $1 / 3$ rule
(g) An individual's IQ score has a Normal 5 distribution $\mathrm{N}\left(100,15^{2}\right)$. Find the probability that an individual IQ score is between 91 and 121.
(h) Following data is given for marks in subject
A and B of a certain examination.

	Subject A	Subject B
Mean Marks	36	85
Standard Deviation	11	8

Coefficient of correlation between

$$
A \text { and } B= \pm 0.66
$$

(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A corresponding to 75 marks obtained in B.
(i) Write the probability distribution formula for Binomial distribution, Poisson distribution and Normal distribution.
2. (a) Find an approximate value of the root of the equation $x^{3}+x-1=0$, near $x=1$. Using the method of Regula-Falsi, twice.
(b) Solve following system of equations by using Gauss - seidel iteration method, perform two iterations

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 6 x+3 y+12 z=35 \\
& 4 x+11 y-z=33
\end{aligned}
$$

(c) Solve the following system of equations by using LU decomposition method $x+y=2 ; 2 x+3 y=5$
(d) For $x=0.5555 \mathrm{E} 1$; $y=0.4545 \mathrm{E} 1$ and $z=0.4535 \mathrm{E} 1$, prove that $x(y-z) \neq x y-x z$
3. (a) A polynomial passes through the points 5 $(1,-1),(2,-1),(3,1)$ and $(4,5)$. Find the polynomial using Newton's forward interpolation formula.
(b) Calculate the value of the integral $\int_{4}^{5.2} \log x \mathrm{~d} x$
by using: (i) Simpson's $3 / 8$ rule
(ii) Simpson's $1 / 3$ rule
(c) Using Runge Kutta method find y (0.2) for 10 the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-x}{y+x} ; y(0)=1$. Take $h=0.2$.
4. (a) The tangent of the angle between the lines of regression y on x and x on y is 0.6 and $\sigma_{x}=\frac{1}{2} \sigma_{y}$. Find $\mathrm{r}_{x y}$.
(b) Compute R and R^{2} for the data given below :

Sample Size (i)	12	21	15	1	24
$x \mathrm{i}$	0.96	1.28	1.65	1.84	2.35
$y \mathrm{i}$	138	160	178	190	210
$\hat{y} \mathrm{i}$	138				
$\hat{\mathrm{e} i}$	0				

regression equation $y=90+50 x$ is used to fill the table where $\hat{e}=y i-\hat{y}$ i.
(c) If a bank receives on an average $\lambda=6 \mathrm{bad}$ cheques per day. What is the probability that it will receive 4 bad cheques on any given day?
(d) What do you mean by term "Goodness to fit test" ? What for the said test is required?
5. (a) Solve the following system of equations by 7 Jacobi Method, determine the results for three approximations.
$3 x+4 y+15 z=54.8$
$x+12 y+3 z=39.66$
$10 x+y-2 z=7.74$
(b) Evaluate the integral $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{~d} x}{1+x}$ by using 8 composite trapezoidal rule with 2 and 4 subintervals.
(c) A book contains 100 misprints distributed randomly throughout its 100 pages. What is the probability that a page observed at random contains atleast two misprints.

