No. of Printed Pages : 4

MCS-033

MCA (Revised)

Term-End Examination

$MCS_033 \cdot ADVANCED DI$

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

- **Note**: Question **no. 1** is **compulsory**. Attempt **any three** questions from the rest.
- 1. (a) Using mathematical induction method, 4 show that $T_n = 2^n - 1$, $n \ge 1$, where T_n denotes the number of minimum number of moves required to transfer n discs from one peg to another under the rules of Tower of Hanoi/Brahma.
 - (b) Find the generating function of the following 4

function $a_r = \frac{1}{(r+1)!}$; r=0, 1, 2, What

are combinatorial identities ? Explain with an appropriate example.

(c) Let G be a simple graph with 6 vertices and 4
11 edges. Check whether the graph G is connected or not.

MCS-033

P.T.O.

(d) Find the degree of each vertex in the given graph.

4

(e) What is the complement of the given graph. 4

2. (a) Determine whether the graphs are 5 isomorphic.

MCS-033

- (b) A connected planar graph has six vertices 5 each of degree 4. Determine the number of regions into which this planar graph can be splitted ?
- (a) Find the order and degree of the following 4 recurrence relation. Also find whether they are homogeneous or non-homogeneous ?
 - (i) $a_n = \sin a_{n-1} + \cos a_{n-2} + \sin a_{n-3} + \dots + e^x$
 - (ii) $a_{n=n} a_{n-2} + 2^n$.
 - (b) Prove that the generating function for the 6 sequence of Binomial coefficients {c (k, 0), c (k, 1) a, c (k, 2) a², ...} is (1 + az)^k.
- 4. (a) Determine the chromatic number of the 4 following graph.

- (b) Construct a non-Hamiltonian graph on 3 •5-vertices.
- (c) Check whether the complete graphs of 3
 4 and 5 vertices are Eulerian.

MCS-033

P.T.O.

- 5. (a) Show that, in a connected Eulerian graph, 3 an Eulerian circuit can be traced starting from any vertex.
 - (b) Solve the recurrence relation given as 4 follows : $a_n 5a_{n-1} + 6 a_{n-2} = 7^n$
 - (c) Draw a graph which is both regular and 3 bipartite ?