MCA (Revised)

Term-End Examination
 June, 2012
 MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Using mathematical induction method, 4 show that $T_{n}=2^{n}-1, n \geqslant 1$, where T_{n} denotes the number of minimum number of moves required to transfer n discs from one peg to another under the rules of Tower of Hanoi/Brahma.
(b) Find the generating function of the following 4
function $a_{r}=\frac{1}{(r+1)!} ; r=0,1,2, \ldots .$. What
are combinatorial identities ? Explain with an appropriate example.
(c) Let G be a simple graph with 6 vertices and 4 11 edges. Check whether the graph G is connected or not.
(d) Find the degree of each vertex in the given graph.

(e) What is the complement of the given graph.

2. (a) Determine whether the graphs are isomorphic.

(b) A connected planar graph has six vertices each of degree 4. Determine the number of regions into which this planar graph can be splitted?

3. (a) Find the order and degree of the following 4 recurrence relation. Also find whether they are homogeneous or non-homogeneous ?
(i) $a_{n}=\sin a_{n-1}+\cos a_{n-2}+\sin$

$$
a_{n-3}+\ldots+e^{x}
$$

(ii) $a_{n=n} a_{n-2}+2^{n}$.
(b) Prove that the generating function for the sequence of Binomial coefficients $\left\{c(k, 0), c(k, 1) a, c(k, 2) a^{2}, \ldots\right\}$ is $(1+a z)^{k}$.
4. (a) Determine the chromatic number of the following graph.

(b) Construct a non-Hamiltonian graph on
-5-vertices.
(c) Check whether the complete graphs of 3 4 and 5 vertices are Eulerian.
5. (a) Show that, in a connected Eulerian graph, 3 an Eulerian circuit can be traced starting from any vertex.
(b) Solve the recurrence relation given as 4 follows : $a_{n}-5 a_{n-1}+6 a_{n-2}=7^{n}$
(c) Draw a graph which is both regular and 3 bipartite?

