MCA (Revised)

Term-End Examination
June, 2012

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHM

Time: $\mathbf{3}$ hours
Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three from the remaining questions.

1. (a) Write Euclid's algorithm for finding Greatest 4 Common Divisor (G.C.D) of two natural numbers m and n.
(b) Let fact (n) $=1 * 2 * 3 \ldots \ldots .{ }^{*} \mathrm{n}$ where ' $*^{\prime} \quad 4$ denotes product of two integers and n is a natural number. Give a recursive definition of fact (n).
(c) Name at least four well-known techniques 2 for solving problems algorithmically.
(d) For the function $f(x)=3 x^{3}+2 x^{2}+1$, show 2 that $f(x)=\mathrm{O}\left(x^{3}\right)$ where ' O^{\prime} denotes 'big oh'.
(e) Explain how binary search method finds or 4 fails to find the number 25 in the sorted list : $8,12,26,35,48,57$.
(f) Explain how the nodes of the following the graph will be traced using breadth first search, starting at node ' a ':

(g) Explain the method of pre-order traversal 4 of a tree, using a suitable example of a tree, with at least eight nodes.
(h) Using Principle of Mathematical Induction, 4 show that sum of first n natural numbers is $n(n+1) / 2$.
(i) Explain the essential idea of Dynamic Programming. How does Dynamic Programming differ from Divide and Conquer approach for solving problems ?
(j) Using selection sort, sort the following 4 sequence of numbers, in the increasing order :

$$
15,12,18,24,13,27
$$

(k) Name four undecidable problems, along 4 with their special significance.
2. (a) Write an algorithm that finds the real roots, if any, of a quadratic equation :

$$
a x^{2}+b x+c=0
$$

Where $a \neq 0, b$ and c are real numbers.
(b) Explain Chomsky classification for 5 grammers, with an appropriate example.
(c) Write a recursive algorithm to find the sum 5 of first n natural numbers.
(d) Sort the following list using Merge Sort :

$$
7,9,10,8,4,6,5 .
$$

3. (a) Find solution of the recurrence equation, 5 given as follows :

$$
F(n)-4 F(n-1)+4 F(n-2)=0
$$

(b) Trace how Depth First Search Traverses the following tree, when starting at node B :

(c) Explain each of the following, with an 8 appropriate example :
(i) Minimax Problem
(ii) Topological Sort
4. (a) Find the value of (12) ${ }^{31}$, using not more than 6 SIX (6) multiplications and/or divisions.
(b) Using either Prim's algorithm or Kruskal's 8 algorithm, find a minimal spanning tree for the graph given as follows :

(c) Explain the meaning of each of the 6 following expression :
(i) $(a+b)^{*}$
(ii) $\mathrm{a}^{*} \mathrm{~b} \mathrm{a}^{*} \mathrm{~b} \mathrm{a}^{*}$
(iii) $(a+b)^{*} a b$

Where ' ${ }^{\prime}$ ' denotes Kleene Closure.
5. (a) Find a grammer for the following language : 8

$$
\left\{a^{m} b^{n} ; m, n \in N, n>m\right\}
$$

(b) Explain each of the following problems, 12 together with their respective significance.
(i) Halting Problem
(ii) Post Correspondence Problem
(iii) Undecidable Problem

