No. of Printed Pages : 3

CS-73

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination June, 2012

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks : 75

Note : Question no. 1 is compulsory. Attempt any three questions from the rest.

a)	Tabulate chomsky hierarchy of grammar with examples.	5
b)	Briefly describe Universal Turing Machine.	5
c)	If L is recursive, show that \overline{L} is also recursive.	4
d)	Using parse tree show that the grammar :	4
	$S \rightarrow S + S \mid S^*S \mid a \text{ is ambigous}$	
	Use $a + a^*a$ as the string	
e)	List three applications of finite Automata.	3
(f)	Convert the following Regular expression into FA : (a+b) * (aa+bb) (a+b)*	5
(g)	When can a problem be termed as undecidable ? Explain with example.	4
	a) b) c) d) f) g)	 a) Tabulate chomsky hierarchy of grammar with examples. b) Briefly describe Universal Turing Machine. c) If L is recursive, show that ⁻/_L is also recursive. d) Using parse tree show that the grammar : S→S+S S*S a is ambigous Use a + a*a as the string e) List three applications of finite Automata. f) Convert the following Regular expression into FA : (a+b) * (aa+bb) (a+b)* g) When can a problem be termed as undecidable ? Explain with example.

00897

CS-73

P.T.O.

 (b) Convert the following Regular expression 5 into a FA : a*(ba) * b *

a (ba) b

(c) Give Regular Expression for all strings that 5 do not end in a double letter.

3. (a) Show that the language :

$$L = \{a^{n}b^{n} : n \ge 0\} \text{ is not regular.}$$
(b) Derive Th (if is not regular.)

- (b) Design a TM that accepts all strings over 5 alphabet $\Sigma = \{a, b\}$ whose second letter is b.
- (c) Explain with example Non Deterministic **4** Turing Machine (NDTM).
- 4. (a) Build a PDA for language described as : 5 $L = \{a^{m}b^{m} \mid m \ge 1\}$
 - (b) Show that the language : 5 $L = \{a^n b^n c^n : n \ge 0\}$ is not context free.
 - (c) Show that the function is primitive recursive 5

$$f(\mathbf{m},\mathbf{n}) = \begin{cases} \mathbf{m} - \mathbf{n} & \text{if } \mathbf{m} \ge \mathbf{n} \\ 0 & \text{else} \end{cases}$$

2.

5

5.

(a) If $f(x) = 2x^3 + 3x^2 + 1$

then show that

$$f(x) = 0(x^3)$$

and also

$$f(x) = 0(x^2).$$

- (b) What is meant by time complexity and 3 space complexity of a problem ?
- (c) Explain how a finite Automata can be used to search information on world wide web?

6