BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

$$
\text { June, } 2012
$$

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : $\mathbf{3}$ hours

Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three from question number 2 to 5. Calculator is allowed.

1. (a) Solve the quadratic equation $6 \times 5=30$
$x^{2}+9.9 x-1=0$ using two decimal digit floating arithmetic with rounding.
(b) Evaluate $\mathrm{f}(x)=\frac{x^{3}}{x-\sin x} \quad$ when $x=.12 \times 10^{-10}$ using two digit arithmetic.
(c) Perform three iterations using Gauss Seidal for following system of equation rounded to 4 decimal $\left[\begin{array}{ccc}-8 & 1 & 1 \\ 1 & -5 & -1 \\ 1 & 1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ 16 \\ 7\end{array}\right]$.
(d) Find $\mathrm{f}^{\prime}(x)$, given $\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{2}$ at x_{0}, x_{1}, x_{2} respectively. Using lagrange interpolation.
(e) Evaluate $\int_{0.2}^{0.4}\left(\sin x-\ln x+\mathrm{e}^{x}\right) \mathrm{dx}$ using Trapezoidal rule, $\mathrm{h}=0.1$.
(f) Perform three iterations to find root of the equation $x^{3}-3 x-5=0$ by Newton Raphson method.
2. (a) Find real root of the equation $\mathrm{f}(x)=x^{3}-x-1=0$ using Bisection Method in 4 iterations.
(b) Solve the following system of equation by Gauss Elimination method

$$
\begin{aligned}
& 4 x_{1}+x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}-2 x_{3}=4 \\
& 3 x_{1}+2 x_{2}-4 x_{3}=6
\end{aligned}
$$

(c) Find lagrange Interpolating polynomial for the following data :

x	$1 / 4$	$1 / 3$	1
$\mathrm{f}(x)$	-1	2	7

3. (a) Find root of the equation $\mathrm{f}(x)=x^{3}-2 x-5=0$ using Regula Falsi method correct to 2 decimal places. $3 \times 5=15$
(b) Perform three iteration of Jacobi method for following system of equation.

$$
\left[\begin{array}{cccc}
5 & -1 & -1 & -1 \\
-1 & 10 & -1 & -1 \\
-1 & -1 & 5 & 1 \\
-1 & -1 & -1 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
12 \\
8 \\
34
\end{array}\right]
$$

starting with $X=(0,0,0,0)$.
(c) Solve $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x}$ using Simpson $\frac{1}{3}$ rule, $\mathrm{h}=\frac{1}{2}$.
4. (a) Use Taylor Series method recursively to solve $y^{\prime}=x^{2}+y^{2}, y(0)=0$ for the interval $(0,0.4)$, Using subinterval of size 0.2 . $3 \times 5=15$
(b) Find cubic polynomial which takes $y(0)=1$, $y(1)=0, y(2)=1, y(3)=10$ and hence find $y(4)$ by Newton Forward Difference for Interpolation.
(c) Perform two iteration of Newton Raphson method on the quadration equation $x^{4}-4 x^{2}+4=0, x_{0}=1.5$. It has double root.
5. (a) Evaluate $\int_{1}^{5} \mathrm{f}(x) \mathrm{d} x$ using Simpson $\frac{1}{3}$ rule on following data. $3 \times 5=15$

x	1	2	3	4	5
$\mathrm{f}(x)$	13	15	70	80	100

(b) Given $\frac{\mathrm{d} y}{\mathrm{~d} x}=y-x, y(0)=2$. Find $y(0.1)$ and $y(0.2)$ using Runge Kutta method of second order, correct to 4 decimal places.
(c) Solve $y^{\prime}=-y$ with $y(0)=1$ for $x=0.04$ and step length $=0.01$ using Euler's Method.

