

]	BACHELOR IN COMPUTER APPLICATIONS
5 7	Term-End Examination
2	Lung 2012
0	June, 2012

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 75

Note : Question number 1 is compulsory. Attempt any three from question number 2 to 5. Calculator is allowed.

- 1. (a) Solve the quadratic equation 6x5=30 x^2+9 . 9x-1=0 using two decimal digit floating arithmetic with rounding.
 - (b) Evaluate $f(x) = \frac{x^3}{x \sin x}$ when

 $x = .12 \times 10^{-10}$ using two digit arithmetic.

(c) Perform three iterations using Gauss Seidal for following system of equation rounded

to 4 decimal
$$\begin{bmatrix} -8 & 1 & 1 \\ 1 & -5 & -1 \\ 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 16 \\ 7 \end{bmatrix}$$
.

(d) Find f'(x), given f_0 , f_1 , f_2 at x_0 , x_1 , x_2 respectively. Using lagrange interpolation.

CS-71

P.T.O.

- 0.4 Evaluate $\int (\sin x - \ln x + e^x) dx$ using (e) Trapezoidal rule, h = 0.1.
- (f) Perform three iterations to find root of the equation $x^3 - 3x - 5 = 0$ by Newton Raphson method.
- 2. (a) Find real root of the equation $f(x) = x^3 - x - 1 = 0$ using Bisection Method in 4 iterations. 3x5=15
 - Solve the following system of equation by (b) Gauss Elimination method

 $4x_1 + x_2 + x_3 = 4$ $x_1 + 4x_2 - 2x_3 = 4$ $3x_1 + 2x_2 - 4x_3 = 6$

(c) Find lagrange Interpolating polynomial for the following data :

x	1/4	1/3	1
f(x)	-1	2	7

3.

(a)

Find root of the equation $f(x) = x^3 - 2x - 5 = 0$ using Regula Falsi method correct to 2 decimal places. 3x5=15

(b) Perform three iteration of Jacobi method for following system of equation.

$$\begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 10 & -1 & -1 \\ -1 & -1 & 5 & 1 \\ -1 & -1 & -1 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -4 \\ 12 \\ 8 \\ 34 \end{bmatrix}$$

starting with X = (0, 0, 0, 0).

(c) Solve
$$\int_{0}^{1} \frac{dx}{1+x}$$
 using Simpson $\frac{1}{3}$ rule, $h = \frac{1}{2}$.

- 4. (a) Use Taylor Series method recursively to solve $y' = x^2 + y^2$, y(0) = 0 for the interval (0, 0.4), Using subinterval of size 0.2. 3x5=15
 - (b) Find cubic polynomial which takes y(0) = 1, y(1) = 0, y(2) = 1, y(3) = 10 and hence find y(4) by Newton Forward Difference for Interpolation.
 - (c) Perform two iteration of Newton Raphson method on the quadration equation $x^4-4x^2+4=0$, $x_0=1.5$. It has double root.

5. (a) Evaluate
$$\int_{1}^{5} f(x) dx$$
 using Simpson $\frac{1}{3}$ rule

3x5 = 15

x	1	2	3	4	5
f(x)	13	15	70	80	100

(b) Given
$$\frac{dy}{dx} = y - x$$
, $y(0) = 2$. Find $y(0.1)$ and

y(0.2) using Runge Kutta method of second order, correct to 4 decimal places.

(c) Solve y' = -y with y(0) = 1 for x = 0.04 and step length = 0.01 using Euler's Method.