## BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2012

## CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

## Time : $\mathbf{3}$ hours

Maximum Marks : 75
Note: Question No. 1 is compulsory. Attempt any three questions from question No. 2 to 6. Use of calculator is permitted.

1. (a) If $f$ is a real function defined by $f(x)=\frac{x-1}{x+1}$
then prove that $f(2 x)=\frac{3 f(x)+1}{f(x)+3}$. $15 \times 3=45$
(b) Find the inverse relation $R^{-1}$ in each of the following cases :
(i) $\mathrm{R}=\{(1,2),(1,3),(2,3),(3,2),(5,6)\}$
(ii) $\mathrm{R}=\{x, y): x, y \in \mathrm{~N}, x+2 y=8\}$
(iii) R is a relation from $\{11,12,13\}$ to $\{8,10,12\}$ defined by $y=x-3$.
(c) Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as $f(x)=5 x+4 \forall x \in \mathrm{R}$ is one - one and onto.
(d) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $x y+y^{2}+3 x^{2} y^{3}+4 x^{3}+5=0$
(e) Evaluate $\int_{3}^{5}\left(9 x^{2}+4 x+5\right) \mathrm{d} x$.
(f) Show that the four points $(0,-1),(6,7)$. $(-2,3)$ and $(8,3)$ are the vertices of a rectangle.
(g) Find the slope of a line which passes through the points $(3,2)$ and $(-1,5)$.
(h) Find the centre and radius of the given circle $x^{2}+y^{2}-4 x+6 y=12$.
(i) Find the equation of the parabola whose focus is $(-3,2)$ and the directrix is $x+y=4$.
(j) Find the equation of the ellipse whose eccentricity is $\frac{1}{2}$, the focus is $(-1,1)$ and the directrix is $x-y+3=0$.
(k) Find the equation of the hyperbola whose directrix is $2 x+y=1$, focus is $(1,2)$ and eccentricity is $\sqrt{3}$.
(l) Let $V=\{1,2,3,4,5,6,7,8,9\}$, $A=\{1,2,3,4\} B=\{2,4,6,8\}, C=\{3,4,5,6\}$ find (i) $(A \cap C)^{\prime}\left(\right.$ ii) $(A \cup B)^{\prime}(i i i)(B-C)^{\prime}$
(m) Solve the simultaneous equations $x-y=5$; $3 x+7 y=5$.
(n) Find the real numbers $x$ and $y$ if ( $x-i y$ ) $(3+5 i)$ is the conjugate of $-6-24 i$.
(o) Evaluate $\int x^{3} \sin \left(x^{4}+1\right) \mathrm{d} x$
2. (a) Find the equation of the plane through the points (2, 1, -1 ) and ( $-1,3,4$ ) and perpendicular to the plane $x-2 y+4 z=10$.
(b) Find the path traced by the centre of a sphere which touches the lines $y=x, z=1$ and $y=-x, z=-1$.
(c) Find the equation of the cylinder having for its base the circle $x^{2}+y^{2}+z^{2}=9$; $x-y+z=3$.
3. (a) If $\alpha$ and $\beta$ are the roots of the equation $2 x^{2}-6 x+2=0$. Form the equation whose roots are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.
$3+3+4$
(b) Prove that $(A-B) \cup B=A \cup B$.
(c) Express the given complex number in the polar form $\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}$.
4. (a) Evaluate : $\int(4 x+5)^{6} \mathrm{~d} x$.
(b) Evaluate : $\int(\log x)^{2} \mathrm{~d} x$.
(c) If $y=\left[x+\sqrt{x^{2}+a^{2}}\right]^{n}$. Prove that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{n y}{\sqrt{x^{2}+a^{2}}}
$$

5. (a) Find the equation of the circle through the points of intersection of the circles $x^{2}+y^{2}+2 x+3 y-7=0 \quad$ and $x^{2}+y^{2}+3 x-2 y-1=0$ and passes through the point $(1,2)$.
$4+3+3$
(b) Obtain the equation of the parabola whose vertex is at $(a, 0)$ and focus is at $(b, 0)(b \neq 0)$.
(c) Find the co-ordinates of the centre, foci and length of the latus rectum and equations of the directrices of the ellipse $\frac{(x-2)^{2}}{25}+\frac{(y+3)^{2}}{16}=1$.
6. (a) Determine the local maximum and local minimum of the function $x^{3}-7 x^{2}+8 x+32$.
(b) Find the point on the curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to the $x$ - axis.
(c) Find the equation of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$.
