BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2012

BCS-012 : BASIC MATHEMATICS

Time : $\mathbf{3}$ hours
Maximum Marks : 100
Note: Question no. one is compulsory. Attempt any three questions from four.

1. (a) For what value of ' k ' the points $(-k+1,2 k)$, 5 ($k, 2-2 k$) and ($-4-k, 6-2 k$) are collinear.
(b) Solve the following system of equations by 5 using Matrix Inverse Method.

$$
\begin{aligned}
& 3 x+4 y+7 z=14 \\
& 2 x-y+3 z=4 \\
& 2 x+2 y-3 z=0
\end{aligned}
$$

(c) Use principle of Mathematical Induction to prove that:

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\ldots \ldots \ldots \ldots .+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

(d) How many terms of G.P $\sqrt{3}, 3,3 \sqrt{3}$. 5

Add upto $39+13 \sqrt{3}$
(e) If $y=\mathrm{ae}^{\mathrm{m} x}+b \mathrm{e}^{-\mathrm{m} x}$ Prove that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{m}^{2} y$
(f) Evaluate Integral $\int \frac{x}{(x+1)(2 x-1)} \mathrm{d} x$.
(g) Find the unit vector in the direction of 5

$$
\begin{array}{r}
(\vec{a}-\vec{b}) \text { where } \vec{a}=-\hat{i}+\hat{j}+\hat{k} \\
\text { and } \vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}
\end{array}
$$

(h) Find the Angle between the lines

$$
\begin{aligned}
& \vec{r}=2 \hat{i}+3 \hat{j}-4 \hat{k}+t(\hat{i}-2 \hat{j}+2 \hat{k}) \\
& \vec{r}=3 \hat{i}-5 \hat{k}+s(3 \hat{i}-2 \hat{j}+6 \hat{k})
\end{aligned}
$$

2. (a) Solve the following system of linear equations using Cramer's Rule \rightarrow

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+4 y+z=7 \\
& 3 x+2 y+9 z=14
\end{aligned}
$$

(b) Construct a 2×2 matrix $\mathrm{A}=[\mathrm{aij}]_{2 \times 2}$ where 5 each element is given by aij $=\frac{1}{2}(i+2 \mathrm{j})^{2}$
(c) Reduce the Matrix to Normal form by elementary operations.

$$
A=\left[\begin{array}{ccc}
5 & 3 & 8 \\
0 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

3. (a) Find the sum to Infinite Number of terms of A.G.P.

$$
3+5\left(\frac{1}{4}\right)+7\left(\frac{1}{4}\right)^{2}+9\left(\frac{1}{4}\right)^{3}+
$$

(b) If $1, \omega, \omega^{2}$ are Cube Roots of unity show that 5 $(1+\omega)^{2}-(1+\omega)^{3}+\omega^{2}=0$.
(c) If α, β are roots of equation $2 x^{2}-3 x-5=0$ form a Quadratic equation whose roots are α^{2}, β^{2}.
(d) Solve the inequality $\frac{3}{5}(x-2) \leq \frac{5}{3}(2-x) \quad 5$ and graph the solution set.
4. (a) Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$ 5
(b) A spherical ballon is being Inflated at the 5 rate of $900 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the Radius of the ballon Increasing when the Radius is 15 cm .
(c) Evaluate Integral $\int \mathrm{e}^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] \mathrm{d} x$
(d) Find the area bounded by the curves $x^{2}=y$ and $y=x$.
5. (a) Find a unit vector perpendicular to both the 5
vectors $\vec{a}=4 \hat{i}+\hat{j}+3 \hat{k}$

$$
\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}
$$

(b) Find the shortest distance between the
lines $\vec{r}=(3 \hat{i}+4 \hat{j}-2 \hat{k})+t(-\hat{i}+2 \hat{j}+\hat{k})$
and $\vec{r}=(\hat{i}-7 \hat{j}+2 \hat{k})+t(\hat{i}+3 \hat{j}-2 \hat{k})$
(c) Suriti wants to Invest at most ₹ 12000 in saving certificates and National Saving Bonds. She has to Invest at least ₹ 2000 in Saving certificates and at least ₹ 4000 in National Saving Bonds. If Rate of Interest on Saving certificates is 8% per annum and rate of interest on national saving bond is 10% per annum. How much money should she invest to earn maximum yearly income? Find also the maximum yearly income.

