BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2023

BECE-015 : ELEMENTARY MATHEMATICAL METHODS IN ECONOMICS

Time : 3 Hours
Maximum Marks : 100
Note : Attempt questions from each Section as directed.

Section-A
Note : Attempt any two questions from this Section.

20 each

1. (a) A two-product firm faces the following demand and cost functions :

$$
\begin{aligned}
\mathrm{Q}_{1} & =40-2 \mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{Q}_{2} & =35-\mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{C} & =\mathrm{Q}_{1}^{2}+2 \mathrm{Q}_{2}^{2}+10
\end{aligned}
$$

P. T. O.
(i) Find the output levels that satisfy the first order conditions.
(ii) What is the maximum profit?
(b) Maximise :

$$
\mathrm{Z}=x y
$$

Subject to :

$$
x+2 y=2
$$

2. (a) Given the input matrix and the final demand vector :

$$
\mathrm{A}=\left[\begin{array}{ccc}
0.55 & 0.25 & 0.34 \\
0.33 & 0.10 & 0.12 \\
0.19 & 0.30 & 0
\end{array}\right] \mathrm{D}=\left[\begin{array}{c}
1800 \\
200 \\
900
\end{array}\right]
$$

(i) Explain the economic meaning of the elements 0.33, 0 and 200.
(ii) Does the data given above satisfy the Hawkins-Simon condition?
(b) Explain how Markov processes can be understood using matrices.
3. Discuss the solution concepts relevant to games of incomplete information, clearly distinguishing between static games and dynamic games.
4. Consider the following macro-model :

$$
\begin{aligned}
\mathrm{Y}_{t} & =\mathrm{C}_{t}+\mathrm{I}_{t}+\mathrm{G}_{t} \\
\mathrm{C}_{t} & =\mathrm{C}_{0}+\alpha \mathrm{Y}_{t-1} \\
\mathrm{I}_{t} & =\mathrm{I}_{0}+\beta\left(\mathrm{C}_{t}-\mathrm{C}_{t-1}\right)
\end{aligned}
$$

where C, I, G stand for consumption, investment and government expenditure respectively and $\beta>0,0<\alpha<1$ and $\mathrm{G}_{t}=\mathrm{G}_{0}$.
(a) Find the time path $\left(\mathrm{Y}_{\mathrm{t}}\right)$ of the national income.
(b) Comment on the stability conditions.

Section-B

Note : Answer any four questions from this Section.

$$
4 \times 12=48
$$

5. Explain the Kuhn-Tucker conditions in nonlinear programming. In what way is non-linear programming an extension of classical methods of optimisation?
6. Find the inverse of the following matrix :

$$
\left[\begin{array}{ccc}
7 & -8 & 5 \\
4 & 3 & -2 \\
5 & 2 & 4
\end{array}\right]
$$

7. Determine the distance between the points :
(a) $(3,0,7)$ and $(-4,8,2)$
(b) $(4,6,7,1)$ and $(-3,0,2,4)$
(c) The distance between the points (3, 1, 2, 4) and $(4,6,5, \lambda)$ is 200 . What can be said about the value of λ ?
P. T. O.
8. Solve the following differential equations :
(a) $3 y^{2} d y-t d t=0$
(b) $2 t d y+y d t=0$
9. Explain the method of optimal control for solving a dynamic optimisation problem.
10. Demonstrate Roy's identity with an example.

Section-C

Note: Answer both questions from this Section.

$$
2 \times 6=12
$$

11. Explain any two of the following :
(a) Subgame
(b) Exponential function
(c) Positive definite matrix
12. (a) Solve:

$$
\int \frac{d x}{(x-2)}
$$

(b) Expand the determinant :

$$
\left|\begin{array}{lll}
8 & 1 & 3 \\
4 & 0 & 1 \\
6 & 0 & 3
\end{array}\right|
$$

BECE-015

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)
 सत्रांत परीक्षा

दिसम्बर, 2023

बी.ई.सी.ई.-015 : अर्थशास्त्र में प्रारम्भिक गणितीय प्रविधियाँ

समय : 3 घण्टे
अधिकतम अंक : 100
नोट : प्रत्येक भाग से निर्देशानुसार प्रश्न हल कीजिए।

भाग-क

नोट : इस भाग से कोई दो प्रश्न हल कीजिए। प्रत्येक 20

1. (क) एक द्विउत्पाद फर्म के समक्ष निम्नलिखित माँग और लागत फलन हैं :

$$
\begin{aligned}
\mathrm{Q}_{1} & =40-2 \mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{Q}_{2} & =35-\mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{C} & =\mathrm{Q}_{1}^{2}+2 \mathrm{Q}_{2}^{2}+10
\end{aligned}
$$

P. T. O.
(i) उत्पादन स्तर ज्ञात कीजिए जो प्रथम-कोटि शर्तें संतुष्ट करती हों।
(ii) अधिकतम लाभ क्या है ?
(ख) $\mathrm{Z}=x y$, का अधिकतमीकरण कीजिए, यदि $x+2 y=2$ हो तो।
2. (क) आगत आव्यूह और अंतिम माँग सदिश इस प्रकार दिए हुए हैं :

$$
\mathrm{A}=\left[\begin{array}{ccc}
0.55 & 0.25 & 0.34 \\
0.33 & 0.10 & 0.12 \\
0.19 & 0.30 & 0
\end{array}\right] \mathrm{D}=\left[\begin{array}{c}
1800 \\
200 \\
900
\end{array}\right]
$$

(i) तत्वों $0.33,0$ और 200 का आर्थिक अर्थ स्पष्ट कीजिए।
(ii) क्या उपर्युक्त आँकड़े हॉकिंस-साइमन शर्तों को संतुष्ट करते हैं ?
(ख) समझाइए कि आव्यूहों का उपयोग करके मार्कोव प्रक्रिया को कैसे समझा जा सकता है।
3. स्थिर खेलों और गतिक खेलों के बीच स्पष्ट अंतर करते हुए, अपूर्ण सूचना वाले खेलों के लिए उपयुक्त समाधान अवधारणाओं को चर्चा कीजिए।
4. निम्नलिखित समष्टि-मॉडल पर विचार कीजिए :

$$
\begin{aligned}
& \mathrm{Y}_{t}=\mathrm{C}_{t}+\mathrm{I}_{t}+\mathrm{G}_{t} \\
& \mathrm{C}_{t}=\mathrm{C}_{0}+\alpha \mathrm{Y}_{t-1} \\
& \mathrm{I}_{t}=\mathrm{I}_{0}+\beta\left(\mathrm{C}_{t}-\mathrm{C}_{t-1}\right)
\end{aligned}
$$

जहाँ $\mathrm{C}, \mathrm{I}, \mathrm{G}$ क्रमशः उपभोग, निवेश और सरकारी व्यय के लिए हैं और $\beta>0,0<\alpha<1$ और $\mathrm{G}_{t}=\mathrm{G}_{0} \mathrm{l}$
(क) राष्ट्रोय आय का समय पथ $\left(\mathrm{Y}_{t}\right)$ ज्ञात कीजिए।
(ख) स्थायित्व शर्तों पर टिप्पणी कीजिए।

खण्ड-ख

नोट : इस भाग से किन्हीं चार प्रश्नों के उत्तर दीजिए।

$$
4 \times 12=48
$$

5. गैर-रैखिक क्रमादेशन में कुहन-टकर शर्तों की व्याख्या कीजिए। गैर-रैखिक क्रमादेशन किस प्रकार इष्टतमीकरण की क्लासिकल विधियों का विस्तार है ?
P. T. O.
6. निम्नलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए :

$$
\left[\begin{array}{ccc}
7 & -8 & 5 \\
4 & 3 & -2 \\
5 & 2 & 4
\end{array}\right]
$$

7. बिन्दुओं के बीच की दूरी निर्धारित कीजिए :
(क) $(3,0,7)$ और $(-4,8,2)$
(ख) $(4,6,7,1)$ और $(-3,0,2,4)$
(ग) बिन्दु $(3,1,2,4)$ और $(4,6,5, \lambda)$ के बीच की दूरी 200 है। λ के मान के बारे में क्या कहा जा सकता है ?
8. निम्नलिखित अवकल समीकरणों को हल कीजिए :
(क) $3 y^{2} d y-t d t=0$
(ख) $2 t d y+y d t=0$
9. एक गतिक इष्टतमीकरण समस्या को हल करने के इष्टतम नियंत्रण विधि की व्याख्या कीजिए।
10. एक उदाहरण के साथ रॉय की सर्वसमिका प्रमाणित कीजिए।

भाग-ग

नोट : इस भाग के दोनों प्रश्नों के उत्तर दीजिए।

$$
2 \times 6=12
$$

11. निम्नलिखित में से किन्हीं दो की व्याख्या कीजिए :
(अ) उपखेल
(ब) घातांकाश्रित फलन
(स) धनात्मक निश्चित आव्यूह
12. (क)हल कीजिए :

$$
\begin{gathered}
\int \frac{d x}{(x-2)} \\
\text { (ख) सारणिक }\left|\begin{array}{lll}
8 & 1 & 3 \\
4 & 0 & 1 \\
6 & 0 & 3
\end{array}\right| \text { को विस्तारित कीजिए। }
\end{gathered}
$$

