MASTER IN COMPUTER APPLICATIONS (MCA) (REVISED)
 Term-End Examination
 December, 2023
 MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 1 is compulsory.
(ii) Answer any three questions from the rest.

1. (a) Find the order and degree of the following recurrence relations. Determine whether they are homogeneous or non-homogeneous :
(i) $a_{n}=n a_{n-1}+(-1)^{n}$
(ii) $a_{n}=a_{n-1}+a_{n-2}$
(b) Solve the following recurrence relation using characteristic equation :

$$
a_{n+2}-5 a_{n+1}+6 a_{n}=2
$$

with initial condition $a_{0}=1, a_{1}=-1$.
(c) Explain how power series can be used as a generating function for a sequence of real numbers.
(d) Let G be a graph with n vertices and ($n-1$) edges. Then prove that the following two statements are true :
(i) G is a tree
(ii) G has no cycles
(e) Define chromatic number of a graph. Construct a graph with chromatic number 5.
2. (a) Describe the following methods to solve recurrence relation :
(i) Method of Inspection
(ii) Method of Telescopic sum
(b) Define Eulerian circuit. Is there any Eulerian circuit existing in the following graph ? Is the following graph edge traceable ? Justify.

3. (a) Solve the following recurrence relation using the characteristic equation: 5

$$
a_{n}^{2}-2 a_{n-1}^{2}=1 \text { for } n \geq 1, a_{0}=2
$$

(b) State Euler's formula for a planar graph. Give an example of a planar graph with five vertices and five regions and verify Euler's formula for your example.
4. (a) State Dirac's and Ore's theorems. Justify that Dirac's theorem follows Ore's theorem.
(b) Solve the following recurrence relation by using iterative method :

$$
a_{n}=3 a_{n-1}+1, a_{0}=1
$$

5. (a) A person deposits ₹ 35,000 in a bank in a savings account as a rate of 7% per annum. Let p_{n} be the amount patyable after n years. Design a recurrence relation to formulate the problem. Also using the recurrence relation, find the amount payable after 6 years.
(b) Define an independent set. Find two different maximal independent sets in the following graph :

