No. of Printed Pages : 7

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2023

BCS-054 : COMPUTER ORIENTED

NUMERICAL TECHNIQUES

Time : 3 Hours Maximum Mar	s:	100
----------------------------	----	-----

Note: (i) Any calculator is allowed during examination.

(ii) Question No. 1 is compulsory.

(iii) Attempt any three more from the next

four questions.

1. (a) Use Gauss Elimination method to solve the system of linear equations given below : 6

$$x_1 + 4x_2 + x_3 = 7$$
$$x_1 + 6x_2 - x_3 = 13$$
$$2x_1 - x_2 + 2x_3 = 5$$

(b) Use Gauss-Seidel method to solve the system of linear equations given below (results should be correct up to two decimal places only):

$$-4x_1 + x_2 + 10x_3 = 21$$
$$5x_1 - x_2 + x_3 = 14$$
$$2x_1 + 8x_2 - x_3 = -7$$

(c) Use Regula-Falsi method to find positive root of the equation $x^3 + 4x^2 - 10 = 0$, correct upto two places of decimal. 6

- (i) Express operator Δ in terms of operator δ
- (ii) Express operator Δ in terms of operator ∇

 (e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated below :

x	f(x)
1	10
2	19
3	40
4	79
5	142
6	235

Also, find the value of f(x), at x = 1.5.

(f) Use Newton's Forward Difference (FD) formula to compute f'(x) and f''(x) at x = 2.0, for the data given below : 5

x	f(x)
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708

(g) Calculate the value of the integral
$$\int_{4}^{5.2} \log x \, dx$$
, using Simpson's 1/3 rule.
(Assume $h = 0.2$). 5

BCS-054

- 2. (a) Using Euler's method tabulate the solution of IVP (Initial Value Problem) $y' = -2ty^2$, y(0) = 1 in the interval [0,0.8], taking h = 0.2.
 - (b) Find the Taylor's series for $(1-x)^{-1}$ at x=0.
 - (c) Perform four iterations of Secant method for finding the root of the equation $x^3+4x^2-10=0$ near x=0 and x=1. Compute upto two decimal places only. 8
- 3. (a) Write Newton-Raphson scheme for finding qth root of a positive number N. Hence

find cube root of 10 correct up to 3 places of

decimal taking initial estimate as 2.0. 8

- (b) Write expression for E, Δ, δ , μ operators in terms of ∇ operator. 4
- (c) Use Lagrange's method of interpolation to find the value of y when x = 2.5 from the following data :

x	У
0	-6
0.5	-1.875
1.5	0.375
3.0	0

Compute upto four places of decimal only.

4. (a) Use divided difference table to find the value of f(a, b, c), for $f(x) = x^2$. 4

(b) Determine first and second derivatives of y = f(x) at x=1.1 from the data tabulated below : 10

x	y = f(x)
1.0	0.0000
1.2	0.1280
1.4	0.5440
1.6	1.2960
1.8	2.4320
2.0	4.0000

(c) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule,

subdivide the interval (0, 1) into 6 equal parts. 6

5. (a) Use modified Euler's method to find the value of y for x = 0.1 and 0.2 from the

differential equation
$$\frac{dy}{dx} = x^2 + y^2 - 2;$$

y (0) = 1. Compute upto 3 places of decimal only. 10

(b) Use fourth order classical Runge-Kutta method to solve the initial value problem u' = -2tu² with u(0) = 1 and h = 0.2 on the interval [0,1].