BACHELOR OF COMPUTER
 APPLICATIONS (BCA) (REVISED)
 Term-End Examination
 December, 2023

BCS-054 : COMPUTER ORIENTED
NUMERICAL TECHNIQUES

Time : 3 Hours
Maximum Marks : 100

Note: (i) Any calculator is allowed during examination.
(ii) Question No. 1 is compulsory.
(iii) Attempt any three more from the next
four questions.
P. T. O.

1. (a) Use Gauss Elimination method to solve the system of linear equations given below : 6

$$
\begin{aligned}
& x_{1}+4 x_{2}+x_{3}=7 \\
& x_{1}+6 x_{2}-x_{3}=13 \\
& 2 x_{1}-x_{2}+2 x_{3}=5
\end{aligned}
$$

(b) Use Gauss-Seidel method to solve the system of linear equations given below (results should be correct upto two decimal places only) :

$$
\begin{gathered}
-4 x_{1}+x_{2}+10 x_{3}=21 \\
5 x_{1}-x_{2}+x_{3}=14 \\
2 x_{1}+8 x_{2}-x_{3}=-7
\end{gathered}
$$

(c) Use Regula-Falsi method to find positive root of the equation $x^{3}+4 x^{2}-10=0$, correct upto two places of decimal.
(d) Perform the following :
(i) Express operator Δ in terms of operator δ
(ii) Express operator Δ in terms of operator ∇
(e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated below :

x	$f(x)$
1	10
2	19
3	40
4	79
5	142
6	235

Also, find the value of $f(x)$, at $x=1.5$.
(f) Use Newton's Forward Difference (FD) formula to compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at $x=2.0$, for the data given below :

x	$f(x)$
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708

P. T. O.
(g) Calculate the value of the integral $\int_{4}^{5.2} \log x d x$, using Simpson's $1 / 3$ rule. (Assume $h=0.2$).
2. (a) Using Euler's method tabulate the solution of IVP (Initial Value Problem) $y^{\prime}=-2 t y^{2}$, $y(0)=1$ in the interval $[0,0.8]$, taking $h=0.2$. 8
(b) Find the Taylor's series for $(1-x)^{-1}$ at $x=0 . \quad 4$
(c) Perform four iterations of Secant method for finding the root of the equation $x^{3}+4 x^{2}-10=0 \quad$ near $\quad x=0$ and $x=1$. Compute upto two decimal places only. 8
3. (a) Write Newton-Raphson scheme for finding q th root of a positive number N. Hence
find cube root of 10 correct up to 3 places of decimal taking initial estimate as 2.0. 8
(b) Write expression for $\mathrm{E}, \Delta, \delta, \mu$ operators in terms of ∇ operator. 4
(c) Use Lagrange's method of interpolation to find the value of y when $x=2.5$ from the following data : 8

x	y
0	-6
0.5	-1.875
1.5	0.375
3.0	0

Compute upto four places of decimal only.
4. (a) Use divided difference table to find the value of $f(a, b, c)$, for $f(x)=x^{2}$. 4
P. T. O.
(b) Determine first and second derivatives of $y=f(x)$ at $x=1.1$ from the data tabulated below :

x	$y=f(x)$
1.0	0.0000
1.2	0.1280
1.4	0.5440
1.6	1.2960
1.8	2.4320
2.0	4.0000

(c) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Trapezoidal rule,
subdivide the interval $(0,1)$ into 6 equal
parts.
5. (a) Use modified Euler's method to find the value of y for $x=0.1$ and 0.2 from the

$$
\text { differential equation } \frac{d y}{d x}=x^{2}+y^{2}-2 ;
$$

$$
\begin{aligned}
& y(0)=1 \text {. Compute upto } 3 \text { places of decimal } \\
& \text { only. }
\end{aligned}
$$

(b) Use fourth order classical Runge-Kutta method to solve the initial value problem $u^{\prime}=-2 t u^{2}$ with $u(0)=1$ and $h=0.2$ on the
interval $[0,1]$.

