# BACHELOR OF COMPUTER 

## APPLICATIONS (BCA) (REVISED)

## Term-End Examination

December, 2023

## BCS-012 : BASIC MATHEMATICS

Time : 3 Hours
Maximum Marks : 100

Note: Question Number 1 is compulsory. Attempt
any three questions from the remaining
questions.

1. (a) Show that:

$$
\left|\begin{array}{lll}
b-c & c-a & a-b \\
c-a & a-b & b-c \\
a-b & b-c & c-a
\end{array}\right|=0 .
$$

P. T. O.
(b) If $\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ and $f(x)=x^{2}-4 x+7$, show that $f(\mathrm{~A})=\mathrm{O}_{2 \times 2}$. Use this result to find $\mathrm{A}^{5}$.
(c) Show that 7 divides $2^{3 n}-1 \forall n \in \mathrm{~N}$.
(d) If $1, \omega, \omega^{2}$ are cube roots of unity, show that:

$$
\begin{array}{r}
(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\left(1+\omega^{4}\right)\left(1+\omega^{6}\right) \\
\left(1+\omega^{8}\right)=4
\end{array}
$$

(e) If $y=a e^{m x}+b e^{-m x}+4$, show that:

$$
\frac{d^{2} y}{d x^{2}}=m^{2}(y-4)
$$

(f) If $\alpha, \beta$ are roots of $x^{2}-2 k x+k^{2}-1=0$

$$
\text { and } \alpha^{2}+\beta^{2}=10, \text { find } k
$$

(g) Find the value of $\lambda$ for which the vectors :
and

$$
\vec{c}=2 \hat{i}+3 \hat{j}+3 \hat{k}
$$

are coplanar.
(h) Find the angle between the pair of lines : 5

$$
\begin{aligned}
& \frac{x-5}{2}=\frac{y-3}{3}=\frac{z-1}{-3} \\
& \text { and } \quad \frac{x}{3}=\frac{y-1}{2}=\frac{z+5}{-3}
\end{aligned}
$$

2. (a) Solve the following set of linear equations by using matrix inverse :

$$
\begin{gathered}
3 x+4 y+7 z=-2 \\
2 x-y+3 z=6 \\
2 x+2 y-3 z=0
\end{gathered}
$$

(b) Use the principle of mathematical induction to prove that:

$$
1^{3}+2^{3}+\ldots .+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

for every natural number $n$.
(c) Find how many terms of the GP $\sqrt{3}, 3,3 \sqrt{3}$,
.... add up to $120+40 \sqrt{3}$.
(d) Write De Moivre's theorem and use it to find $(i+\sqrt{3})^{3}$.
3. (a) If $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4\end{array}\right]$, show that $\mathrm{A}(\operatorname{adj} \mathrm{A})=0$.
(b) Solve the inequality $\left|\frac{x-4}{2}\right| \leq \frac{5}{12}$ and graph the solution set.
(c) Solve the equation $8 x^{3}-14 x^{2}+7 x-1=0$, given that roots are in GP.
(d) Verify that $f(x)=1+x^{2} \ln \left(\frac{1}{x}\right)$ has a local

$$
\operatorname{maxima} \text { at } x=\frac{1}{\sqrt{e}},(x>0) \text {. }
$$

4. (a) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-2 x}}{x} .
$$

(b) Find the shortest distance between the lines:
and $\quad \overrightarrow{r_{2}}=(\hat{i}-7 \hat{j}-2 \hat{k})+t(\hat{i}+3 \hat{j}+2 \hat{k})$.
(c) Determine the length of curve $y=\frac{2}{3} x^{\frac{3}{2}}$

$$
\text { from }(0,0) \text { to }\left(1, \frac{2}{3}\right) .
$$

(d) Find the sum of all the integers between 100 and 1000 that are divisible by 7 .
5. (a) Determine the area between the two curves $\quad y=3+2 x, y=3-x, 0 \leq x \leq 3$ using integration. 5
(b) Find the direction cosines of the lines passing through the two points $(1,2,3)$ and $(-1,1,0)$.
(c) Find the maximum value of $2 a+5 b$ subject to the following constraints : 5

$$
\begin{gathered}
-3 a-2 b \leq-6 \\
-2 a+b \leq 2 \\
4 a+6 b \leq 24 \\
2 a-3 b \leq 3 \\
a \geq 0 \text { and } b \geq 0 .
\end{gathered}
$$

(d) Reduce the matrix $A=\left[\begin{array}{ccc}5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$ to normal form and hence find its rank.

