B. SC. (GENERAL)/

B. A. (GENERAL)

(BSCG/BAG)
Term-End Examination

December, 2023

BMTE-144 : NUMERICAL ANALYSIS

Time : 3 Hours
Maximum Marks : 100

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any six questions from Q. Nos. 2 to 8 .
(iii)Use of non-programmable scientific calculators is allowed.
P. T. 0.

1. State whether the following statements are true or false ? Give a short proof or a counterexample in support of your answer : $2 \times 5=10$
(i) For decreasing the number of iterations in Newton-Raphson method, the value of $f^{\prime}(x)$ must be increased.
(ii) If the bisection method is applied to compute a root of the equation :

$$
f(x)=x^{4}-x^{3}-x^{2}-4=0
$$

in the interval $[1,9]$, the method converges to a solution after 3 iterations.
(iii) In Jacobi's method, the coefficient matrix has no zeroes on its main diagonal.
(iv) $\Delta=\mathrm{E}+1$
(v) Newton forward difference method can be used only for unequally spaced intervals.
2. (a) Apply classical Runge-Kutta fourth order method to find an approximate value of y when $x=1.2$, given that $\frac{d y}{d x}=x y$, where
$y(1)=2$ with $h=0.2$. 8
(b) Perform three iterations of the Newton-

Raphson method to obtain the aproximate
value of $(17)^{1 / 3}$ starting with initial
approximation $x_{0}=2$.
3. (a) Given that:

$$
f(0)=1, f(1)=3, f(3)=55
$$

find the unique polynomial of degree 2 or less, which fits the given data.
(b) Jacobi iteration method is used to solve the system of equations :

$$
\left[\begin{array}{lll}
4 & 0 & 3 \\
0 & 3 & 2 \\
3 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right]
$$

Determine the rate of convergence of the method.
(c) Does a bound for the error $\mathrm{R}_{3}(x)$ in the Taylor's series expansion for the function $f(x)=x^{\frac{5}{2}}$ in $[-1,1]$ about $x=0$ exist ? Justify your answer.
4. (a) For the following data interpolate at $x=0.25$ using forward difference polynomial :

x	$f(x)$
0.1	1.40
0.2	1.56
0.3	1.76
0.4	2.00
0.5	2.28

(b) Determine the order of convergence of the iterative method:

$$
x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

for finding a simple root of the equation

$$
\begin{equation*}
f(x)=0 . \tag{7}
\end{equation*}
$$

5. (a) Estimate the eigenvalues of the matrix :

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

using Gerschgorin bound. Draw a rough sketch of the region where the eigen values
lie.
(b) A particle is moving along a straight line. The displacements x of the particle at some time instance t are given below :

t	x
0	5
1	8
2	12
3	17
4	26

Find the velocity and acceleration of the particle at $t=4$. 7
6. (a) Solve the following system by the method of LU decomposition :

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

Take: $\quad l_{11}=l_{22}=l_{33}=1$.
(b) Apply Lagrange's method to the given data to find the value of x when $f(x)=15: \quad 7$

x	$f(x)$
5	12
6	13
9	14
11	16

7. (a) Solve the following system of linear equations $\mathrm{A} x=b$ with partial pivoting using Guass-Elimination method : 8

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}-x_{3}=5 \\
& 4 x_{1}+4 x_{2}-3 x_{3}=3 \\
& -2 x_{1}+3 x_{2}-x_{3}=1
\end{aligned}
$$

(b) If:

$$
1+\mu^{2} \delta^{2}=\mathrm{C}_{1}+\mathrm{C}_{2} \delta^{2}+\mathrm{C}_{3} \delta^{4}
$$

where μ is the mean operator and δ is the central difference operator, find the values of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}.
8. (a) The equation $x^{3}-x-1=0$ has a root in the interval $[1,2]$. Determine a suitable iteration function $g(x)$ so that the iteration method $x_{k}=g\left(x_{k}\right)$, where $k=0$, $1,2, \ldots . .$. . converges to the root. Perform two iterations of this method with $x_{0}=1.6$.
(b) Obtain the approximate value of $\int_{0}^{2} \frac{x}{1+x^{2}} d x$ using Simpson's rule with 3 and 5 nodal points. Obtain the improved value using Romberg integration. 7

BMTE-144

बी.एस-सी. (सामान्य)/बी. ए. (सामान्य)
(बी. एस-सी. जी./बी. ए. जी.)
सत्रांत परीक्षा
दिसम्बर, 2023
बी. एम. टी. ई.-144 : संख्यात्मक विश्लेषण
समय : 3 घण्टे
अधिकतम अंक
100
नोट : (i) प्रश्न संख्या 1 करना अनिवार्य है।
(ii) प्रश्न संख्या 2 से 8 तक कोई छः प्रश्न हल कीजिए।
(iii) अप्रोग्रामनीय वैज्ञानिक कैल्कुलेटर का प्रयोग करने की अनुमति है।

1. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए : $2 \times 5=10$
(i) न्यूटन-रैफ्सन विधि में पुनरावृत्तियों की संख्या में कमी करने के लिए $f^{\prime}(x)$ का मान बढ़ाना चाहिए।
P. T. O.
(ii) यदि समीकरण $f(x)=x^{4}-x^{3}-x^{2}-4=0$ के अंतराल $[1,9]$ में मूल परिकलित करने के लिए द्विभाजक विधि का प्रयोग होता है, तो विधि का हल 3 पुनरावृत्तियों के बाद ही अभिसरित होता है।
(iii) जैकोबी विधि में, गुणांक आव्यूह के प्रमुख विकर्ण के अवयवों में कोई भी शून्य नहीं होता है।
(iv) $\Delta=\mathrm{E}+1$
(v) न्यूटन अग्रांतर विधि केवल असमान अंतरालों के लिए ही प्रयोग की जा सकती है।
2. (क)चिरप्रतिष्ठित चतुर्थ कोटि रुंगे-कुट्टा विधि से समीकरण $\frac{d y}{d x}=x y$, जहाँ $y(1)=2$ के लिए $x=1.2$ पर y का सन्निकट मान ज्ञात कीजिए, जबकि $h=0.2$ है।
(ख) प्रारम्भिक सन्निकटन $x_{0}=2$ से प्रारम्भ करके $(17)^{1 / 3}$ का सन्निकट मान प्राप्त करने के लिए न्यूटन-रैफ्सन विधि की तीन पुनरावृत्तियाँ कीजिए।
3. (क) दिया गया है :

$$
f(0)=1, f(1)=3, f(3)=55
$$

घात 2 या उससे कम का अद्वितीय बहुपद ज्ञात कीजिए जो दिए गए आँकड़ों में फिट हो सके। 6
(ख) निम्नलिखित समीकरण निकाय को जैकोबी पुनरावृत्ति से हल कीजिए :

$$
\left[\begin{array}{lll}
4 & 0 & 3 \\
0 & 3 & 2 \\
3 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right]
$$

विधि की अभिसरण-दर भी निर्धारित कीजिए। 6
(ग) क्या $x=0$ के प्रति अंतराल $[-1,1]$ में फलन $f(x)=x^{\frac{5}{2}}$ क टेलर श्रेणी प्रसार में त्रुटि $\mathrm{R}_{3}(x)$ के परिबद्ध का अस्तित्व है ? अपने उत्तर की पुष्टि कीजिए।
4. (क) निम्नलिखित आँकड़ों के लिए, अग्रांतर बहुपद का प्रयोग करके $x=0.25$ पर अंतर्वेशन कीजिए : 8

x	$f(x)$
0.1	1.40
0.2	1.56
0.3	1.76
0.4	2.00
0.5	2.28

(ख) समीकरण $f(x)=0$ का साधारण मूल ज्ञात करने के लिए पुनरावृत्ति विधि :

$$
x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

की अभिसरण कोटि निर्धारित कीजिए।
5. (क)गर्शगोरिन परिबद्ध से आव्यूह :

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

के आइगेनमान आकलित कीजिए। उस प्रदेश का अनुमानित ग्राफ बनाइए जहाँ आइगेन मान स्थित हैं।
(ख)एक कण सीधी रेखा में गतिमान है। कुछ समयों t पर, कण का विस्थापन x नीचे दिया गया है :

t	x
0	5
1	8
2	12
3	17
4	26

$t=4$ पर कण का वेग और त्वरण ज्ञात कीजिए।
6. (क) LU वियोजन विधि से निम्नलिखित निकाय को हल कीजिए :

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

आप $l_{11}=l_{22}=l_{33}=1$ लीजिए।
P. T. 0.
(ख) दिए आँकड़ों पर लग्रांज विधि का प्रयोग करके x का मान ज्ञात कीजिए जब $f(x)=15$ है : 7

x	$f(x)$
5	12
6	13
9	14
11	16

7. (क)आंशिक कीलकन के साथ गाउस विस्थापन विधि द्वारा निम्नलिखित रैखिक समीकरणों के निकाय

$$
\begin{aligned}
& \mathrm{A} x=b \text { को हल कीजिए : } \\
& 2 x_{1}+3 x_{2}-x_{3}=5 \\
& 4 x_{1}+4 x_{2}-3 x_{3}=3 \\
& -2 x_{1}+3 x_{2}-x_{3}=1
\end{aligned}
$$

(ख) यदि :

$$
1+\mu^{2} \delta^{2}=\mathrm{C}_{1}+\mathrm{C}_{2} \delta^{2}+\mathrm{C}_{3} \delta^{4}
$$

जहाँ μ माध्य संकारक और δ केन्द्रीय अंतर संकारक हो, तो $\mathrm{C}_{1}, \mathrm{C}_{2}$ एवं C_{3} के मान ज्ञात कीजिए।
8. (क) समीकरण $x^{3}-x-1=0$ का अंतराल $[1,2]$ में एक मूल है। एक उपयुक्त पुनरावृत्ति फलन $g(x)$ निर्धारित कीजिए ताकि पुनरावृत्ति विधि $x_{k}=g\left(x_{k}\right), \quad k=0,1,2, \ldots .$. मूल की ओर अभिसरित होती हो $x_{0}=1.6$ लेकर इस विधि की दो पुनरावृत्तियाँ कीजिए। 8
(ख) 3 और 5 सोपान बिन्दुओं वाले सिम्पसन नियम से $\int_{0}^{2} \frac{x}{1+x^{2}} d x$ का सन्निकट मान प्राप्त कीजिए। रॉम्बर्ग समाकल से सुधारा गया मान प्राप्त कीजिए।

BMTE-144

P. T. 0.

