BACHELOR OF ARTS/BACHELOR OF SCIENCE (GENERAL)
 (BAG/BSCG)

Term-End Examination

December, 2023

BMTC-134 : ALGEBRA

Time : 3 Hours
Maximum Marks : 100

Note: (i) There are eight questions in this paper.
(ii) The eighth question is compulsory.
(iii) Do any six questions from Question No. 1 to Question No. 7.
(iv) Use of calculator is not allowed.
(v) Do your rough work in a clearly identifiable part of the bottom of the same page or in the side of the page only.

1. (a) Let R be the relation defined on \mathbb{Z} by $a \mathrm{R} b$ if $a b$ is an odd integer. Which of the properties for an equivalence relation hold for R and which properties do not hold ? Justify your answer.
(b) Define a subgroup of a group. Check whether :

$$
\mathrm{H}=\left\{\left.\left[\begin{array}{lll}
a & 0 & b \\
c & 0 & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{C}\right\}
$$

is a subgroup of the group of 2×3 matrices over \mathbb{C} under addition.2
(c) State Lagrange's theorem. What are the possible orders of subgroups of a group of order 15 ?2
(d) Define a unit in a ring with identity. Give an example of a ring with identity R and a unit element in R.
(e) Let $\mathrm{S}=\{-2,-1,1,2\}$ and * be the binary operation defined by $a^{*} b=-a$. Compute the Cayley table for (S, *). Is * commutative ? Is * associative ? Justify your answer. 6
2. (a) Let A be a 4×3 real matrix, B be a 3×5 real matrix and C be a 4×5 real matrix. Which of the following operations are defined?
(i) $\mathrm{AB}-\mathrm{C}$
(ii) $\mathrm{BA}+\mathrm{C}^{t}$

For those operations that are defined, what is the order of the resulting matrix? 3
(b) Let $\alpha=(145), \beta=(1243) \in S_{5}$. Compute $\sigma=\alpha \cdot \beta^{-1}$. Write σ as a product of transpositions. What is the signature of σ ?
(c) If F is a field, show that $\mathrm{U}(\mathrm{F}[x])=\mathrm{F}^{*}$.
(d) Let $\mathrm{R}=\mathbb{Z}_{18}$:
(i) Give, with justification, a nilpotent element in R.
(ii) Give, with justification, a zero divisor in R which is not nilpotent.
(iii) What is the order of $U(R)$?
3. (a) Show that, if G is a finite group such that
$o(\mathrm{G})$ is neither one nor a prime, then G has a proper subgroup.
(b) Define a prime ideal. Give a prime ideal in \mathbb{Z}.
(c) Calculate the following :
(i) $\left(\overline{3} x^{3}+\overline{2} x^{2}+\overline{5} x+\overline{3}\right)+\left(\overline{6} x^{3}+\overline{2} x^{2}+\overline{4} x+\overline{5}\right)$
(ii) $\left(\overline{5} x^{2}+\overline{5} x+\overline{6}\right) \cdot\left(\overline{3} x^{3}+\overline{4} x+\overline{6}\right)$ in $\mathbb{Z}_{11}[x]$
(d) Let G be a group of prime order. Show that G has no proper non-trivial subgroup. Further, show that G is cyclic. Further, check whether or not all the subgroups of a group of order 15 is cyclic.
4. (a) Find $t, s \in \mathbb{Z}$ such that:

$$
(t) 105+(s) 40=(105,40)
$$

(b) If H and K are normal abelian sub-groups of a group, and if $\mathrm{H} \cap \mathrm{K}=\{e\}$, show that HK is abelian. Will the result be still true if we remove the condition that $\mathrm{H} \cap \mathrm{K}=\{e\} ?$
(c) In each of the following cases, check whether or not S is a subring of R :
(i) $\mathrm{S}=\left\{\left.\frac{a}{2^{r}} \right\rvert\, a, r \in \mathbb{Z}\right\}, \mathrm{R}=\mathbb{Q}$
(ii) $\mathrm{S}=\left\{\left.\left[\begin{array}{ll}a & 1 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}, \mathrm{R}=\mathrm{M}_{2}(\mathbb{R})$
5. (a) Let R be the ring $(\wp(\mathrm{X}), \Delta, \cap)$, $\mathrm{S}=(\wp(\mathrm{Y}), \Delta, \cap)$, where X is a non-empty set with a proper non-empty subset Y. Let $\phi: \mathrm{R} \rightarrow \mathrm{S}$ be defined by $\phi(\mathrm{A})=\mathrm{A} \cap \mathrm{Y}$ for all $\mathrm{A} \subset \mathrm{X}$. Prove that ϕ is a ring homomorphism. What is the kernel of ϕ ? 6
(b) Let F be a field and let $f(x) \in \mathrm{F}[x]$ be irreducible in $\mathrm{F}[x]$. Show that the ideal $\langle f(x)\rangle$ is a maximal ideal in $\mathrm{F}[x]$. Use this to deduce that $\mathbb{Q}[x] /\left\langle x^{5}+6 x^{3}+18\right\rangle$ is a field. 7
(c) Define a normal subgroup. Give a normal subgroup of S_{5}.
6. (a) Find the order of each of the elements in $U(9)$. Is $U(9)$ cyclic ? Justify your answer.
(b) Check whether or not $\langle\overline{7}\rangle$ is a maximal ideal in \mathbb{Z}_{35}.
(c) Show that $6 \mid o\left(\mathrm{~A}_{4}\right)$, but A_{4} doesn't have a subgroup of order 6 .
7. (a) Let $S^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\} \quad$ and $\mathrm{U}=\left\{z \in \mathbb{C} * \mid z^{n}=1\right.$ for some $\left.n \in \mathbb{N}\right\}$. Check that U is a group. Is U a proper subgroup of S^{\prime} ? Justify your answer. 3
(b) Let R be a ring (not necessarily commutative) and I and J be ideals of R. Show that $I \cap J$ and $\mathrm{I}+\mathrm{J}=\{a+b \mid a \in \mathrm{I}, b \in \mathrm{~J}\}$ are ideals of R. 5
(c) Show that $\langle x, 7\rangle$ is not a principal ideal in $\mathbb{Z}[x]$.
8. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter-example :
(a) The signature of every odd permuation is -1 .
P. T. O.
(b) Every group of order eight is abelian.
(c) The ring $\mathbb{Z}_{2}[x]$ has infinitely many elements.
(d) In a non-commutative ring, product of two units is a unit.
(e) $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is a field of six elements.

BMTC-134

कला स्नातक / विज्ञान स्नातक (सामान्य) (बी.ए.जी./बी.एस.सी.जी.) सत्रांत परीक्षा
 दिसम्बर, 2023 बी.एम.टी.सी.-134 : बीजगणित

समय : 3 घण्टे अधिकतम अंक : 100
नोट : (i) इस प्रश्न पत्र में आठ प्रश्न हैं।
(ii) आठवाँ प्रश्न करना अनिवार्य है।
(iii) प्रश्न संख्या 1 से 7 तक कोई भी छः प्रश्न कीजिए।
(iv) कैलकुलेटरों के प्रयोग की अनुमति नहीं है।
(v) रफ कार्य उसी पेज के नीचे स्पष्ट रूप से दर्शित भाग में या पेज के बगल में करें।

1. (क)मान लीजिए \mathbb{Z} पर सम्बन्ध $\mathrm{R} a \mathrm{R} b$ यदि $a b$ विषम है, द्वारा परिभाषित है। R तुल्यता सम्बन्थ के लिए जरूरत कौन-से गुणों को सन्तुष्ट करता है और कौन-से गुणों को सन्तुष्ट नहीं करता ? अपने उत्तर की पुष्टि कीजिए।
P. T. O.
(ख)एक समूह का उपसमूह परिभाषित कीजिए। जाँच कीजिए कि :

$$
\mathrm{H}=\left\{\left.\left[\begin{array}{lll}
a & 0 & b \\
c & 0 & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{C}\right\}
$$

योग के सापेक्ष \mathbb{C} पर 2×3 आव्यूहों क समूह का उपसमूह है।
(ग) लैग्रांज प्रमेय बताइए। एक कोटि 15 वाल समूह की उपसमूहों की कोटि क्या हो सकती है ? 2
(घ) एक तत्समकी वलय में मात्रक परिभाषित कीजिए। एक तत्समकी वलय R और R में एक मात्रक का उदाहरण दीजिए। 2
(ड) मान लीजिए $\mathrm{S}=\{-2,-1,1,2\}$ और द्विआधारी संक्रिया *, $a^{*} b=-a$ द्वारा परिभाषित है। $(\mathrm{S}, *)$ को कैली सारणी बनाइए। क्या * क्रमविनिमेय है ? क्या * साहचर्य है ? अपने उत्तर की पुष्टि कीजिए।
2. (क) मान लीजिए A एक 4×3 वास्तविक आव्यूह है, B एक 3×5 वास्तविक आव्यूह है और C एक 4×5 वास्तविक आव्यूह है। निम्नलिखित में से कौन-सी संक्रियाएँ साध्य हैं ?
(i) $\mathrm{AB}-\mathrm{C}$
(ii) $\mathrm{BA}+\mathrm{C}^{t}$

जो संक्रियाएँ परिभाषित हैं उनमें प्राप्त आव्यूह की
कोटि क्या होगी ?
(ख) मान लीजिए $\alpha=(145), \beta=(1243) \in S_{5}$.
$\sigma=\alpha \cdot \beta^{-1}$ परिकलित कीजिए। σ को पक्षान्तरण के
गुणनफल के रूप में लिखिए। σ की चिन्हक क्या
है ?
(ग) यदि F एक क्षेत्र है, तो दिखाइए कि $\mathrm{U}(\mathrm{F}[x])=\mathrm{F}^{*}$. 4
P. T. 0.
(घ) मान लीजिए $\mathrm{R}=\mathbb{Z}_{18}$:
(i) पुष्टि के साथ R में एक शून्यभावी अवयव दीजिए।
(ii) पुष्टि के साथ R में एक शून्य का भागक दीजिए जो शून्यभावी न हो।
(iii) $\mathrm{U}(\mathrm{R})$ की कोटि क्या है ?
3. (क) दिखाइए कि, यदि G एक परिमित समूह है जिसके लिए $o(\mathrm{G})$ न तो एक न ही अभाज्य है, तब G का एक उचित उपसमूह होगी। 5
(ख) अभाज्य गुणजावली को परिभाषित कीजिए। \mathbb{Z} में एक अभाज्य गुणजावली दीजिए। 2
(ग) निम्नलिखित को परिकलित कीजिए :
(i) $\mathbb{Z}_{7}[x]$ में

$$
\left(\overline{3} x^{3}+\overline{2} x^{2}+\overline{5} x+\overline{3}\right)+\left(\overline{6} x^{3}+\overline{2} x^{2}+\overline{4} x+\overline{5}\right)
$$

(ii) $\mathbb{Z}_{11}[x]$ में $\left(\overline{5} x^{2}+\overline{5} x+\overline{6}\right) \cdot\left(\overline{3} x^{3}+\overline{4} x+\overline{6}\right)$
(घ) मान लीजिए G एक अभाज्य कोटि वाला समूह है। दिखाइए कि G का कोई उचित उतुच्छ उपसमूह नहीं है। आगे, दिखाइए कि G चक्रीय है। यह भी जाँच कीजिए कि कोटि 15 वाल एक समूह का प्रत्येक उपसमूह चक्रीय है।
4. (क) $t, s \in \mathbb{Z}$ निकालिए जिसके लिए :

$$
(t) 105+(s) 40=(105,40) \text { । }
$$

(ख) यदि H और K एक समूह के प्रसामान्य आबेली उपसमूह हैं और $\mathrm{H} \cap \mathrm{K}=\{e\}$, तो दिखाइए कि HK आबेली है। क्या यह निष्कर्ष प्रतिबन्ध, $\mathrm{H} \cap \mathrm{K}=\{e\}$ हटाने पर भी सत्य होगा ?
(ग) निम्नलिखित प्रत्येक स्थिति में जाँच कीजिए कि S वलय R की उपवलय है या नहीं :
(i) $\mathrm{S}=\left\{\left.\frac{a}{2^{r}} \right\rvert\, a, r \in \mathbb{Z}\right\}, \mathrm{R}=\mathbb{Q}$
(ii) $\mathrm{S}=\left\{\left.\left[\begin{array}{ll}a & 1 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}, \mathrm{R}=\mathrm{M}_{2}(\mathbb{R})$
P. T. O.
5. (क) मान लीजिए वलय $\quad \mathrm{R}=(\wp(\mathrm{X}), \Delta, \cap)$, $\mathrm{S}=(\wp(\mathrm{Y}), \Delta, \cap)$, जहाँ X अरिक्त समुच्चय है और Y, X का अरिक्त उपसमुच्चय है। मान लीजिए $\phi: \mathrm{R} \rightarrow \mathrm{S}$ सभी $\mathrm{A} \subset \mathrm{X}$ के लिए $\phi(\mathrm{A})=\mathrm{A} \cap \mathrm{Y}$ द्वारा परिभाषित है। दिखाइए कि ϕ एक वलय समाकारिता है। ϕ की अष्टि क्या है ? 6
(ख) मान लीजिए F एक क्षेत्र है और $f(x) \in \mathrm{F}[x]$ $\mathrm{F}(x)$ में अखंडनीय है। दिखाइए कि $\langle f(x)\rangle, \mathrm{F}(x)$ में एक उच्चिष्ठ गुणजावली है। इसका प्रयोग करके दिखाइए कि $\mathbb{Q}[x] /\left\langle x^{5}+6 x^{3}+18\right\rangle$ एक क्षेत्र है। 7
(ग) एक प्रसामान्य उपसमूह को परिभाषित कीजिए। S_{5} का एक प्रसामान्य उपसमूह दीजिए। 2
6. (क) $U(9)$ में प्रत्येक अवयव की कोटि निकालिए। क्या $\mathrm{U}(9)$ चक्रीय है ? अपने उत्तर की पुष्टि कीजिए।
(ख) जाँच कीजिए कि $\langle\overline{7}\rangle \mathbb{Z}_{35}$ की उच्चिष्ठ गुणजावली है या नहीं।
(ग) दिखाइए कि $6 \mid o\left(\mathrm{~A}_{4}\right)$ परन्तु A_{4} की कोटि 6 वाला कोई भी उपसमूह नहीं है। 7
7. (क) मान लीजिए $\mathrm{S}^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ और $\mathrm{U}=\left\{z \in \mathbb{C}^{*} \mid z^{n}=1 \quad n \in \mathbb{N}\right\}$, जाँच कीजिए कि U एक समूह है। क्या $\mathrm{U}, \mathrm{S}^{\prime}$ का उचित उपसमूह है ? अपने उत्तर की पुष्टि कीजिए। 3
(ख) मान लीजिए R एक वलय है। (क्रमविनिमेय होना जरूरी नहीं है।) मान लीजिए I और J, R की गुणजावलियाँ हैं। दिखाइए कि $\mathrm{I} \cap \mathrm{J}$ और $\mathrm{I}+\mathrm{J}=\{a+b \mid a \in \mathrm{I}, b \in \mathrm{~J}\} \quad \mathrm{R}$ की गुणजावलियाँ हैं।
(ग) दिखाइए कि $\langle x, 7\rangle \mathbb{Z}[x]$ में मुख्य गुणजावली नहीं है।
P. T. 0.
8. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से कथन असत्य हैं ? अपने उत्तर की पुष्टि एक लघु उपपत्ति या प्रति-उदाहरण द्वारा कीजिए : 10
(क)प्रत्येक विषम क्रमचय का चिह्नक -1 होता है।
(ख) कोटि 8 वाला प्रत्येक समूह आबेली है।
(ग) वलय $\mathbb{Z}_{2}[x]$ में अन्ततः अनेक अवयव हैं।
(घ) एक अक्रमविनिमेय वलय में दो मात्रक का गुणनफल मात्रक होता है।
(ङ) $\mathbb{Z}_{2} \times \mathbb{Z}_{3} 6$ अवयवों वाला क्षेत्र है।

