BACHELOR OF SCIENCE (GENERAL)/ BACHELOR OF ARTS (GENERAL)
 (BSCG/BAG)

Term-End Examination
December, 2023 BMTC-133 : REAL ANALYSIS

Time : 3 Hours
Maximum Marks : 100
Note: (i) Question No. 1 is compulsory.
(ii) Do any six questions from Question Nos. 2 to 8.

1. Which of the following statements are true or false ? Give reasons for your answers in the form of a short proof or a counter-example, whichever is appropriate : $2 \times 5=10$
(a) The set $\left\{\left(1+\frac{1}{n^{2}}\right): n \in \mathbf{N}\right\}$ admits of an infimum.
P. T. 0.
(b) Q / N is countable.
(c) The equation $x^{3}-3 x+1=0$ has a root in the interval $[1,2]$.
(d) A bounded function which has only two points of discontinuity is not integrable.
(e) The series:

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\ldots \ldots \ldots
$$

is divergent.
2. (a) Show that $\left(\frac{\cos 2 n}{2 n}\right)_{n \in \mathrm{~N}}$ converges to zero. 5
(b) If $f^{\prime}(x)$ and $g^{\prime}(x)$ exist for all $x \in[a, b]$ and $g^{\prime}(x)$ does not vanish anywhere in] $a, b[$, then prove that :

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(c)-f(a)}{g(b)-g(c)}
$$

for some $c \in] a, b[$.
(c) State the Inverse Function Theorem. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{3}+8 x-2$ has an inverse. Find the values of $f^{-1}(y)$ for the values of y corresponding to $x=1,2,3$.
3. (a) Find the radius of convergence of the series $\Sigma a_{n} x^{n}$, where $a_{n}=\frac{n!}{n^{n}}$.
(b) Let $f:[0,1] \rightarrow \mathbf{R}$ be defined by:

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \frac{1}{x^{2}}, & \text { for } x \in(0,1] \\
0, & \text { for } x=0
\end{array}\right.
$$

Show that f^{\prime} exists, but f^{\prime} is not Riemann integrable.
(c) Show, whether or not, the set:

$$
\mathrm{X}=\left\{\frac{1}{n}+\frac{1+(-1)^{n}}{2}: n \in \mathbf{N}\right\}
$$

is closed.
4. (a) Using mathematical induction, prove that 9 is a factor of $n^{3}+(n+1)^{3}+(n+2)^{3}$ for all $n \in \mathbf{N}$.
(b) Check whether or not, the series :

$$
\sum\left(\frac{2}{(n+1)(n+2)}+\frac{1}{3^{n}}\right)
$$

is convergent. If convergent, find also its sum.
(c) Prove that :

$$
\tan ^{-1} x>x-x^{3}, \text { if } x>0
$$

5. (a) Evaluate:

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{2 n} \frac{n}{(4 n+r)^{2}}
$$

(b) Find the limits of the following sequences, if they exist :
(i) $\left(\frac{4}{n^{2}}+\frac{1-2 n}{n}\right)_{n \in \mathrm{~N}}$
(ii) $\left(\frac{\sin 3 n \cdot \cos 4 n}{n^{2}}\right)_{n \in \mathrm{~N}}$
(c) Let $f_{n}(x)=\frac{\sin n x}{n!}$ for $0 \leq x \leq \pi$. Show that the series Σf_{n} converges uniformly on $[0, \pi]$. 5
6. (a) Find the derivative of $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}, x \in[0,3]$, if possible.
(b) Determine the values of x for which the function f defined by :

$$
f(x)=12 x^{5}-45 x^{4}+40 x^{3}+6, \forall x \in \mathbf{R}
$$

attains a (i) maximum value, and (ii) a minimum value.
(c) Test the following series for convergence : 4

$$
\frac{2}{3}+\left(\frac{3}{7}\right)^{2}+\left(\frac{4}{11}\right)^{3}+\ldots \ldots \ldots
$$

7. (a) Check whether or not the sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$, defined by :

$$
a_{n+1}=2-\frac{1}{a_{n}+2} \forall n \geq 1
$$

and $a_{1}=2$ is convergent.
(b) Examine the function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{e^{\frac{1}{x}}-e^{\frac{-1}{x}}}{e^{\frac{1}{x}}+e^{\frac{-1}{x}}}, & \text { for } x \neq 0 \\
1, & \text { for } x=0
\end{array}\right.
$$

for continuity at $x=0$. If not continuous, describe the nature of discontinuity.
(c) Check for Riemann integrability of the function f defined on $[1,3]$ as :

$$
f(x)=\left\{\begin{array}{cc}
1, & \text { when } x \text { is rational } \\
-1, & \text { when } x \text { is irrational }
\end{array}\right\}
$$

8. (a) Establish the equivalence :

$$
(p \cap q) \cup[\sim p \cup(\sim p \cup q)] \equiv \sim p \cup q
$$

(b) Prove that every convergent sequence is bounded. Also prove or disprove its converse.
(c) Test the convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{3}+1}
$$

BMTC-133

बी. एस-सी. (सामान्य)/बी. ए. (सामान्य) (बी. एस-सी. जी./ बी. ए. जी.)
 सत्रांत परीक्षा

दिसम्बर, 2023

 बी. एम. टी. सी.-133 : वास्तविक विश्लेषणसमय : 3 घण्टे अधि
नोट : (i) प्रश्न संख्या 1 अनिवार्य है।
(ii) प्रश्न सं. 2 से 8 तक किन्हीं छः प्रश्नों के उत्तर दीजिए।

1. निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से असत्य ? लघु उपपत्ति या प्रति-उदाहरण, जो भी उचित हो, के साथ अपने उत्तरों के कारण बताइए :

$$
2 \times 5=10
$$

(i) समुच्चय $\left\{\left(1+\frac{1}{n^{2}}\right): n \in \mathbf{N}\right\}$ का निम्निष्ठ है।
(ii) Q / N गणनीय है।
P. T. O.
(iii) समीकरण $x^{3}-3 x+1=0$ का अंतराल $[1,2]$ में एक मूल है।
(iv) एक परिबद्ध फलन जिसके केवल दो ही असांतत्य बिन्दु हैं, समाकलनीय नहीं हो सकता है।
(v) श्रेणी $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\ldots \ldots \ldots$. अपसारी है।
2. (क) दिखाइए कि $\left(\frac{\cos 2 n}{2 n}\right)_{n \in \mathrm{~N}}$ शून्य पर अभिसरित होता है।
(ख) यदि सभी $x \in[a, b]$ के लिए $f^{\prime}(x)$ और $g^{\prime}(x)$ का अस्तित्व है, और $\left.g^{\prime}(x),\right] a, b[$ पर शून्येतर हैं, तो सिद्ध कीजिए कि किसी $c \in] a, b[$ के लिए :

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(c)-f(a)}{g(b)-g(c)}
$$

(ग) व्युत्क्रम फलन प्रमेय का कथन लिखिए। दिखाइए कि $f(x)=x^{3}+8 x-2$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ का व्युत्क्रम है। $x=1,2,3$ के संगत y के मानों के लिए $f^{-1}(y)$ के मान ज्ञात कीजिए।
3. (क) श्रेणी $\Sigma a_{n} x^{n}$ की अभिसरण त्रिज्या ज्ञात कीजिए, जहाँ $a_{n}=\frac{n!}{n^{n}}$ है।
(ख) मान लीजिए $f:[0,1] \rightarrow \mathbf{R}$ निम्न प्रकार परिभाषित है :

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \frac{1}{x^{2}}, & \text { यदि } x \in(0,1] \\
0, & \text { यदि } x=0
\end{array}\right.
$$

दिखाइए कि f^{\prime} का अस्तित्व है; लेकिन f^{\prime} रीमान समाकलनीय नहीं है।
(ग) दिखाइए कि समुच्चय :

$$
\mathrm{X}=\left\{\frac{1}{n}+\frac{1+(-1)^{n}}{2}: n \in \mathbf{N}\right\}
$$

संवृत है या नहीं।
4. (क) गणितीय आगमन सिद्धान्त से सिद्ध कीजिए कि सभी $n \in \mathbf{N}$ के लिए $n^{3}+(n+1)^{3}+(n+2)^{3}$ 9 से विभाज्य है।
(ख) जाँच कीजिए कि श्रेणी :

$$
\sum \frac{2}{(n+1)(n+2)}+\frac{1}{3^{n}}
$$

अभिसारी है या नहीं। यदि अभिसारी है, तो इसका योगफल भी ज्ञात कीजिए।
(ग) यदि $x>0$ है, तो सिद्ध कीजिए कि :

$$
\tan ^{-1} x>x-x^{3}
$$

है।
5. (क)मान ज्ञात कीजिए : 5

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{2 n} \frac{n}{(4 n+r)^{2}}
$$

(ख) निम्नलिखित अनुक्रमों की सीमाएँ ज्ञात कीजिए, यदि उनका अस्तित्व हो :
(i) $\left(\frac{4}{n^{2}}+\frac{1-2 n}{n}\right)_{n \in \mathrm{~N}}$
(ii) $\left(\frac{\sin 3 n \cdot \cos 4 n}{n^{2}}\right)_{n \in \mathrm{~N}}$
(ग) मान लीजिए $0 \leq x \leq \pi$ के लिए, $f_{n}(x)=\frac{\sin n x}{n!}$ है। दिखाइए कि श्रेणी $\Sigma f_{n},[0, \pi]$ पर एकसमानत: अभिसारी है। 5
6. (क) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}, x \in[0,3]$ का अवकलज ज्ञात कीजिए, यदि यह संभव हो।
(ख) x के वह मान ज्ञात कीजिए जिनके लिए

$$
f(x)=12 x^{5}-45 x^{4}+40 x^{3}+6, \forall x \in \mathbf{R}
$$

द्वारा परिभाषित फलन f का (i) उच्चिष्ठ मान हो, तथा (ii) निम्निष्ठ मान हो। 5
(ग) निम्नलिखित श्रेणी के अभिसरण की जाँच कीजिए :

$$
\frac{2}{3}+\left(\frac{3}{7}\right)^{2}+\left(\frac{4}{11}\right)^{3}+\ldots \ldots \ldots
$$

7. (क) जाँच कीजिए कि :

$$
a_{n+1}=2-\frac{1}{a_{n}+2} \forall n \geq 1
$$

और $a_{1}=2$ द्वारा परिभाषित अनुक्रम $\left(a_{n}\right)_{n \in \mathbf{N}}$ अभिसारी है या नहीं। 5
(ख) $x=0$ पर फलन

$$
f(x)=\left\{\begin{array}{cl}
\frac{e^{\frac{1}{x}}-e^{\frac{-1}{x}}}{\frac{1}{\frac{1}{x}}+e^{\frac{-1}{x}}}, & \text { यदि } x \neq 0 \\
1 & , \text { यदि } x=0
\end{array}\right.
$$

के सांतत्य का परीक्षण कीजिए। यदि संतत नहीं है, तो असांतत्य की प्रकृति बताइए।
(ग) $[1,3]$ पर परिभाषित फलन f :

$$
f(x)=\left\{\begin{array}{r}
1, \text { जब } x \text { परिमेय है } \\
-1, \text { जब } x \text { अपरिमेय है }
\end{array}\right.
$$

की रीमान समाकलनीयता की जाँच कीजिए। 5
8. (क) तुल्यता $\quad(p \cap q) \cup[\sim p \cup(\sim p \cup q)] \equiv \sim p \cup q$ सिद्ध कीजिए।
(ख) सिद्ध कीजिए कि प्रत्येक अभिसारी अनुक्रम परिबद्ध होता है। साथ ही इसका विलोम सिद्ध या असिद्ध कीजिए। 5
(ग) श्रेणी $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{3}+1}$ के अभिसरण की जाँच कीजिए।

