BACHELOR'S DEGREE PROGRAMME (BDP) (BSCG/BAG)

Term-End Examination

December, 2023

BMTC-131 : CALCULUS

Time : 3 Hours
Maximum Marks : 100
Note: (i) Question No. 1 is compulsory.
(ii) Attempt any six questions from Q. No. 2 to Q. No. 8.
(iii) Use of calculator is not allowed.

1. Which of the following statements are true or false ? Give reasons for your answers in the form of a short proof or a counter-example, whichever is appropriate :
(i) If f and g are functions on \mathbf{R} defined by

$$
\begin{aligned}
& f(x)=3 x-4 \text { and } g(x)=2|x-3|, \text { then } \\
& (g \circ f)(2)=-2 .
\end{aligned}
$$

P. T. O.
(ii) The function f, defined by $f(x)=|x-5|$ is differentiable in $[0,3]$.
(iii) The set] $-\infty, 15$] \cap] $5, \infty$ [is an open interval.
(iv) If $\mathrm{Z}=a+i b \in \mathbf{C}$ such that $\frac{a}{b}=-1$, then Z lies in the second quadrant of the Argand plane.
(v) Every integrable function is continuous.
2. (a) Give an example of a relation, if it exists, which is neither reflexive, nor symmetric, nor transitive.
(b) Find all the cube roots of $8 i$ and represent them in Argand plane.
(c) If :

$$
\mathrm{I}_{n}=\int_{0}^{\infty} e^{-x} \cos ^{n} x d x, \quad(n \geq 2)
$$

find an equation relating I_{n} and I_{n-2}.
3. (a) Find the maximum and the minimum values of the function $f:[0,2 \pi] \rightarrow \quad \mathbf{R}$ defined by $f(x)=5 \cos x+12 \sin x$.
(b) Express :

$$
\frac{x(x+4)}{x^{3}+x^{2}+5 x+5}
$$

as a sum of partial fractions.
(c) For which value of k, is the function f defined below continuous at $x=2$? $\quad 3$

$$
f(x)= \begin{cases}3-k x, & \text { for } 1 \leq x<2 \\ \frac{x^{2}}{4}-4, & \text { for } x \geq 2\end{cases}
$$

4. (a) Prove or disprove the following :
"There exists an injective function from \mathbf{N} to \mathbf{N}, which is not surjective."
(b) Evaluate :

$$
\int \sqrt{1+\sqrt{x}} d x
$$

(c) By considering the function f defined by $f(x)=(x-2) \ln x$, over $[1,2]$, show that the equation, $x(1+\ln x)=2$ is satisfied by at least one value of x, which lies in the interval] 1, 2 [. 6
P. T. O.
5. (a) Prove that the curves:

$$
\begin{gathered}
x^{2}+2 x y-y^{2}+2 a x=0 \\
\text { and } \quad 3 y^{3}-2 a^{2} x-4 a^{2} y+a^{3}=0
\end{gathered}
$$

intersect at an angle $\tan ^{-1}\left(\frac{9}{8}\right)$ at the point $(a,-a)$.
(b) Solve the equation :

$$
x^{4}-2 x^{3}+4 x^{2}+6 x-21=0
$$

given that it has two roots, which are equal in magnitude, but opposite in sign.
(c) A manufacture's cost function is :

$$
\frac{d \mathrm{C}}{d x}=\frac{500 x}{\sqrt{x^{2}+40}}
$$

where x is the number of units of a product in hundreds. If C is the cost in rupees, find the cost involved to increase production from 300 to 900 units.
6. (a) Is the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x|x|$, differentiable at $x=0$? Justify your answer.
(b) Trace the curve :

$$
y^{2}=x^{2}(x+1)
$$

by stating all the properties used to trace it.
7. (a) Find the entire length of the cardioid

$$
\begin{equation*}
r=a(1-\cos \theta) . \tag{8}
\end{equation*}
$$

(b) If :

$$
\mathrm{I}_{n}=\int_{0}^{\pi} \frac{1-\cos n x}{1-\cos x} d x, n \geq 0
$$

then show that $\mathrm{I}_{n+2}+\mathrm{I}_{n}=2 \mathrm{I}_{n+1}$.
Hence show that:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n \theta}{\sin ^{2} \theta} d \theta=\frac{n \pi}{2}
$$

8. (a) Find all the maximum and minimum values of the function f given by :

$$
f(x)=\int_{1}^{x}\left[2(t-1)(t-2)^{3}+3(t-1)^{2}(t-2)^{2}\right] d t
$$

(b) If :

$$
y=a \cos (\ln x)+b \sin (\ln x)
$$

then find the value of
$x^{2} y_{n+2}+(2 n+1) x y_{n+1}$ in terms of y_{n},
where y_{n} is the nth derivative of y w. r.t. x.

BMTC-131

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) (बी.एस.सी.जी./बी.ए.जी.)
 सत्रांत परीक्षा

दिसम्बर, 2023

बी.एम.टी.सी.-131 : कलन
समय : 3 घण्टे
अधिकतम अंक : 100
नोट : (i) प्रश्न सं. 1 करना अनिवार्य है।
(ii) प्रश्न सं $\mathbf{2}$ से $\mathbf{8}$ में से कोई छः प्रश्न कीजिए।
(iii) कैलकुलेटर का प्रयोग करने को अनुमति नहीं है।

1. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए : $5 \times 2=10$
(i) यदि f और g, \mathbf{R} पर $f(x)=3 x-4$ और $g(x)=2|x-3|$ द्वारा परिभाषित हैं, तो $(g \circ f)(2)=-2 ।$
P. T. O.
(ii) $f(x)=|x-5|$ द्वारा परिभाषित फलन $f[0,3]$ में अवकलनीय है।
(iii) समुच्चय $]-\infty, 15] \cap] 5, \infty[$ एक विवृत अंतराल है।
(iv) यदि $\mathrm{Z}=a+i b \in \mathbf{C}$ इस प्रकार है कि $\frac{a}{b}=-1$

है, तो Z आरगां समतल के द्वितीय चतुर्थांक में स्थित है।
(v) प्रत्येक समाकलनीय फलन सतत् होता है।
2. (क) ऐसे एक संबंध का, यदि अस्तित्व है, उदाहरण

दीजिए जो न तो स्वतुल्य न ही सममित और न
ही संक्रामक है।
(ख) $8 i$ के सभी घनमूल ज्ञात कीजिए और उन्हें

> आरगां समतल पर दर्शाइए।
(ग) यदि :

$$
\mathrm{I}_{n}=\int_{0}^{\infty} e^{-x} \cos ^{n} x d x, \quad(n \geq 2)
$$

है, तो I_{n} और I_{n-2} में एक समीकरण ज्ञात कीजिए।
3. (क) $f(x)=5 \cos x+12 \sin x$ द्वारा परिभाषित फलन $f:[0,2 \pi] \rightarrow \mathbf{R}$ के अधिकतम और न्यूनतम मान ज्ञात कीजिए।
(ख) $\frac{x(x+4)}{x^{3}+x^{2}+5 x+5}$ को आंशिक भिन्नों के योग में व्यक्त कीजिए।
(ग) $f(x)=\left\{\begin{array}{lr}3-k x, & 1 \leq x<2 \text { के लिए } \\ \frac{x^{2}}{4}-4, & x \geq 2 \text { के लिए }\end{array}\right.$
द्वारा परिभाषित फलन $f k$ के किस मान के लिए $x=2$ पर सतत् है ?
4. (क) निम्नलिखित को सिद्ध या असिद्ध कीजिए : 3
" \mathbf{N} से \mathbf{N} पर एक एकैकी फलन का अस्तित्व है, जो आच्छादक नहीं है।"
P. T. O.
(ख) $\int \sqrt{1+\sqrt{x}} d x$ ज्ञात कीजिए।
(ग) $f(x)=(x-2) \ln x$ द्वारा परिभाषित फलन f लीजिए और दर्शाइए कि समीकरण $x(1+\ln x)=2, x$ के कम से कम एक ऐसे मान से जो अंतराल $] 1,2$ [में है, संतुष्ट होती है।
5. (क) दर्शाइए कि वक्र $x^{2}+2 x y-y^{2}+2 a x=0$ और $3 y^{3}-2 a^{2} x-4 a^{2} y+a^{3}=0$ बिन्दु $(a,-a)$ पर कोण $\tan ^{-1}\left(\frac{9}{8}\right)$ से प्रतिच्छेद करते हैं। 4
(ख) समीकरण $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ हल कीजिए। दिया गया है कि इसके दो मूल परिमाण में समान और चिह्नों में विपरीत हैं।
(ग) एक निर्माता का लागत फलन $\frac{d \mathrm{C}}{d x}=\frac{500 x}{\sqrt{x^{2}+40}}$ है, जहाँ x उत्पाद की इकाई सैकड़ों में है। यदि C रुपयों में है, तो उत्पादन को 300 से 900 इकाइयों तक बढ़ाने में लगी लागत ज्ञात कीजिए।
6. (क) क्या $f(x)=x|x|$ द्वारा परिभाषित फलन

$$
f: \mathbf{R} \rightarrow \mathbf{R}, x=0 \text { पर अवकलनीय है ? अपने }
$$

उत्तर को स्पष्ट कीजिए। 5
(ख) $y^{2}=x^{2}(x+1)$ को आरेखित कीजिए और ऐसा करने के लिए प्रयोग किए गये गुणधर्मों का लिखिए।
7. (क) हदयाभ $r=a(1-\cos \theta)$ की पूरी लम्बाई ज्ञात कीजिए।
(ख) यदि $\mathrm{I}_{n}=\int_{0}^{\pi} \frac{1-\cos n x}{1-\cos x} d x, n \geq 0$ है, तो दर्शाइए
कि $\mathrm{I}_{n+2}+\mathrm{I}_{n}=2 \mathrm{I}_{n+1}$ । इस प्रकार दर्शाइए
कि:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n \theta}{\sin ^{2} \theta} d \theta=\frac{n \pi}{2}
$$

P. T. 0.
8. (क) $f(x)=\int_{1}^{x}\left[2(t-1)(t-2)^{3}+3(t-1)^{2}(t-2)^{2}\right] d t$

द्वारा परिभाषित फलन के सभी अधिकतम और न्यूनतम मान ज्ञात कीजिए। 8
(ख) यदि $y=a \cos (\ln x)+b \sin (\ln x)$ है, तो $x^{2} y_{n+2}+(2 n+1) x y_{n+1}$ का मान y_{n} के पद में ज्ञात कीजिए, जहाँ y_{n}, y का x के सापेक्ष n वाँ अवकलज है। 7

