No. of Printed Pages : 12 BMTC-131

BACHELOR'S DEGREE PROGRAMME (BDP) (BSCG/BAG)

Term-End Examination

December, 2023

BMTC-131 : CALCULUS

Time : 3 Hours

Maximum Marks : 100

Note : (*i*) *Question No.* **1** *is compulsory.*

(ii) Attempt any six questions fromQ. No. 2 to Q. No. 8.

(iii) Use of calculator is not allowed.

- Which of the following statements are true or false ? Give reasons for your answers in the form of a short proof or a counter-example, whichever is appropriate : 5×2=10
 - (i) If f and g are functions on **R** defined by f(x) = 3x - 4 and g(x) = 2|x - 3|, then $(g \circ f)(2) = -2$.

- (ii) The function *f*, defined by f(x) = |x-5| is differentiable in [0,3].
- (iii) The set $] \infty$, 15 $] \cap] 5$, ∞ [is an open interval.
- (iv) If $Z = a + ib \in C$ such that $\frac{a}{b} = -1$, then Z lies in the second quadrant of the Argand plane.
- (v) Every integrable function is continuous.
- 2. (a) Give an example of a relation, if it exists, which is neither reflexive, nor symmetric, nor transitive.
 - (b) Find all the cube roots of 8i and represent them in Argand plane.6
 - (c) If:

$$I_n = \int_0^\infty e^{-x} \cos^n x \, dx, \quad (n \ge 2)$$

find an equation relating I_n and I_{n-2} . 6 3. (a) Find the maximum and the minimum values of the function $f:[0,2\pi] \rightarrow \mathbb{R}$ defined by $f(x) = 5\cos x + 12\sin x$. 6

[2]

(b) Express :

$$\frac{x(x+4)}{x^3+x^2+5x+5}$$

as a sum of partial fractions. 6

(c) For which value of k, is the function f defined below continuous at x = 2?

$$f(x) = \begin{cases} 3 - kx, & \text{for } 1 \le x < 2\\ \frac{x^2}{4} - 4, & \text{for } x \ge 2 \end{cases}$$

4. (a) Prove or disprove the following : 3

"There exists an injective function from **N** to **N**, which is not surjective."

(b) Evaluate : 6

$$\int \sqrt{1 + \sqrt{x}} \, dx$$

(c) By considering the function f defined by $f(x) = (x-2)\ln x$, over [1, 2], show that the equation, $x(1+\ln x) = 2$ is satisfied by at least one value of x, which lies in the interval] 1, 2 [. 6

5. (a) Prove that the curves :

 $x^{2} + 2xy - y^{2} + 2ax = 0$ and $3y^{3} - 2a^{2}x - 4a^{2}y + a^{3} = 0$, intersect at an angle $\tan^{-1}\left(\frac{9}{8}\right)$ at the point (a, -a).

(b) Solve the equation :

$$x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$$

given that it has two roots, which are equal in magnitude, but opposite in sign. 6

(c) A manufacture's cost function is :

$$\frac{d\mathcal{C}}{dx} = \frac{500x}{\sqrt{x^2 + 40}},$$

where x is the number of units of a product in hundreds. If C is the cost in rupees, find the cost involved to increase production from 300 to 900 units. 5

6. (a) Is the function $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = x|x|, differentiable at x = 0? Justify your answer. 5

[5]

(b) Trace the curve :

 $y^2 = x^2 \left(x + 1 \right)$

by stating all the properties used to trace it. 10

7. (a) Find the entire length of the cardioid $r = a (1 - \cos \theta)$. 8

(b) If:

$$I_n = \int_0^{\pi} \frac{1 - \cos nx}{1 - \cos x} \, dx, \quad n \ge 0,$$

then show that $I_{n+2} + I_n = 2 I_{n+1}$.

Hence show that :

$$\int_0^{\frac{\pi}{2}} \frac{\sin^2 n\theta}{\sin^2 \theta} d\theta = \frac{n\pi}{2}.$$

8. (a) Find all the maximum and minimum values of the function *f* given by : 8

$$f(x) = \int_{1}^{x} \left[2(t-1)(t-2)^{3} + 3(t-1)^{2}(t-2)^{2} \right] dt$$

P. T. O.

7

(b) If:

$$y = a\cos(\ln x) + b\sin(\ln x),$$

then find the value of $x^2y_{n+2} + (2n+1)xy_{n+1}$ in terms of y_n , where y_n is the *n*th derivative of y w. r. t. x. 7

BMTC-131

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) (बी.एस.सी.जी.⁄ बी.ए.जी.) सत्रांत परीक्षा

> दिसम्बर, 2023 बी.एम.टी.सी.-131 : कलन

समय : 3 घण्टे अधिकतम अंक : 100 **नोट** : (i) प्रश्न सं. 1 करना **अनिवार्य** है। (ii) प्रश्न सं 2 से 8 में से कोई छ: प्रश्न कीजिए। (iii) कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

- निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए : 5×2=10

(ii) f(x) = |x-5| द्वारा परिभाषित फलन f[0,3] में अवकलनीय है।

BMTC-131

- (iii) समुच्चय]-∞,15]∩]5,∞[एक विवृत अंतराल है।
- (iv) यदि $Z = a + ib \in \mathbb{C}$ इस प्रकार है कि $\frac{a}{b} = -1$ है, तो Z आरगां समतल के द्वितीय चतुर्थांक में स्थित है।
- (v) प्रत्येक समाकलनीय फलन सतत् होता है।
- (क) ऐसे एक संबंध का, यदि अस्तित्व है, उदाहरण दीजिए जो न तो स्वतुल्य न ही सममित और न ही संक्रामक है।
 3
 - (ख) 8i के सभी घनमूल ज्ञात कीजिए और उन्हें
 आरगां समतल पर दर्शाइए।

(ग) यदि :

$$I_n = \int_0^\infty e^{-x} \cos^n x \, dx, \quad (n \ge 2)$$

है, तो I_n और I_{n-2} में एक समीकरण ज्ञात
कीजिए। 6

3. (क)
$$f(x) = 5\cos x + 12\sin x$$
 द्वारा परिभाषित फलन
 $f:[0,2\pi] \rightarrow \mathbf{R}$ के अधिकतम और न्यूनतम मान
ज्ञात कीजिए। 6

(ख)
$$\frac{x(x+4)}{x^3+x^2+5x+5}$$
 को आंशिक भिन्नों के योग में
व्यक्त कीजिए। 6

$$(\mathbf{T}) \quad f(x) = \begin{cases} 3 - kx, & 1 \le x < 2 \text{ $\widehat{\sigma}$ ferv} \\ \frac{x^2}{4} - 4, & x \ge 2 \text{ $\widehat{\sigma}$ ferv} \end{cases}$$

द्वारा परिभाषित फलन f k के किस मान के लिए x = 2 पर सतत् है ? 3

(ख)
$$\int \sqrt{1+\sqrt{x}} dx$$
 ज्ञात कीजिए। 6

BMTC-131

(ग) $f(x) = (x-2) \ln x$ द्वारा परिभाषित फलन fलीजिए और दर्शाइए कि समीकरण $x(1+\ln x) = 2, x$ के कम से कम एक ऐसे मान से जो अंतराल]1,2[में है, संतुष्ट होती है। 6

5. (क) दर्शाइए कि वक्र
$$x^2 + 2xy - y^2 + 2ax = 0$$
 और
 $3y^3 - 2a^2x - 4a^2y + a^3 = 0$ बिन्दु $(a, -a)$ पर
कोण $\tan^{-1}\left(\frac{9}{8}\right)$ से प्रतिच्छेद करते हैं। 4

(ख) समीकरण
$$x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$$
 हल
कीजिए। दिया गया है कि इसके दो मूल परिमाण
में समान और चिह्नों में विपरीत हैं। 6

(ग) एक निर्माता का लागत फलन $\frac{dC}{dx} = \frac{500x}{\sqrt{x^2 + 40}}$ है, जहाँ x उत्पाद की इकाई सैकड़ों में है। यदि C रुपयों में है, तो उत्पादन को 300 से 900 इकाइयों तक बढ़ाने में लगी लागत ज्ञात कीजिए। 5

[10]

		[11]				BMTC-131			
6. (क)	क्या	f(x) = x	x	द्वारा	परिभ	षित	फलन	
		$f: \mathbf{R}$	\rightarrow R , $x =$	=0 पर	ं अवव	कलनीर	प है ?	अपने	
		उत्तर व	को स्पष्ट व	<u> त्रीजिए</u> ।				5	
(ख)	$y^2 = x$	$x^2(x+1)$	को अ	ारेखित	कीषि	नए औ	र ऐसा	
		करने	के लिए	प्रयोग	किए	गये	गुणधम	र्गे का	
		लिखिए	ίI					10	

7. (क) हृदयाभ
$$r = a ig(1 - \cos heta ig)$$
 की पूरी लम्बाई ज्ञात
कोजिए। 8

(ख) यदि
$$I_n = \int_0^{\pi} \frac{1 - \cos nx}{1 - \cos x} dx, n \ge 0$$
 है, तो दर्शाइए

कि $\mathbf{I}_{n+2} + \mathbf{I}_n = 2 \, \mathbf{I}_{n+1}$ । इस प्रकार दर्शाइए कि : 7

$$\int_0^{\frac{\pi}{2}} \frac{\sin^2 n\theta}{\sin^2 \theta} d\theta = \frac{n\pi}{2} \, \mathsf{I}$$

[12] BMTC-131
8. (क)
$$f(x) = \int_{1}^{x} [2(t-1)(t-2)^{3} + 3(t-1)^{2}(t-2)^{2}] dt$$

द्वारा परिभाषित फलन के सभी अधिकतम और
न्यूनतम मान ज्ञात कीजिए। 8
(ख) यदि $y = a\cos(\ln x) + b\sin(\ln x)$ है, तो
 $x^{2}y_{n+2} + (2n+1)xy_{n+1}$ का मान y_{n} के पद
में ज्ञात कीजिए, जहाँ y_{n}, y का x के सापेक्ष
 n वाँ अवकलज है। 7

BMTC-131