M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)
Term-End Examination

December, 2022

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note:
(i) Question no. 7 is compulsory.
(ii) Attempt any four questions from questions no. 1 to 6 .
(iii) Use of non-programmable and non-scientific calculator is allowed.
(iv) All symbols have their usual meanings.

1. (a) A single-layer neural network has six inputs and three outputs. The outputs are to be limited to and continuous over the range 0 to 1 . Based on the description given, answer the following :
(i) How many neurons are required in the neural network?
(ii) What are the dimensions of the weight matrix?
(iii) What kind of transfer function could be used?
(iv) Is a bias required ? Give reason.
(b) The weight matrix (W) and the two test input vectors $\left(\mathrm{PT}_{1}\right.$ and $\left.\mathrm{PT}_{2}\right)$ for Hopfield network are given below :

$$
\mathrm{W}=\frac{1}{3}\left[\begin{array}{rrr}
0 & -1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right] ;
$$

$$
\mathrm{PT}_{1}=\left(\begin{array}{lll}
2 & -2 & 2
\end{array}\right) \text { and } \mathrm{PT}_{2}=\left(\begin{array}{lll}
-2 & 2 & -2
\end{array}\right)
$$

Check, whether the output state vectors satisfy the alignment conditions.
2. (a) Construct the α-cut at $\alpha=0.7$ and $\alpha=0.5$, for the fuzzy set given below :

X	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
μ_{x}	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 7$	$0 \cdot 1$

(b) Determine the cluster unit $\mathrm{C}_{\mathrm{j}}(\mathrm{j}=1,2,3,4,5)$ that is closest to the input vector ($0 \cdot 3,0.6$) by using square of the Euclidean distance in a Kohonen self-organising map, as shown below :

3. (a) Maximize the function

$$
f(x)=\frac{-x^{2}}{10}+3 x, \text { where } 0 \leq x \leq 31
$$

using Genetic algorithm.
(b) Solve the network to approximate the function $g(x)=1+\sin \left(\frac{\pi x}{4}\right)$ for $-2 \leq x \leq 2$, choosing the initial weights and bias as the random numbers.
4. (a) Write the schema for the Gene sequence (1000110) and (0001100).
(b) Write at least four chromosomes sets, which are identified by schema $\mathrm{S}=(10 * 0 *)$.
(c) Determine $\mathrm{A} \cup \overline{\mathrm{B}}, \overline{\mathrm{A}}, \mathrm{A} \cap \overline{\mathrm{B}}$ and $\mathrm{A} \cup \overline{\mathrm{A}}$ for the fuzzy sets A and B, given below :

$$
\begin{aligned}
& \mathrm{A}=\left\{\frac{0 \cdot 1}{0}, \frac{0 \cdot 2}{1}, \frac{0 \cdot 4}{2}, \frac{0 \cdot 6}{3}, \frac{1}{4}\right\} \text { and } \\
& \mathrm{B}=\left\{\frac{1}{0}, \frac{0 \cdot 5}{1}, \frac{0 \cdot 7}{2}, \frac{0 \cdot 3}{3}, \frac{0}{4}\right\}
\end{aligned}
$$

(d) Briefly discuss the term "Hedges".
5. (a) How does ADALINE differ from MADALINE ? Discuss the MADALINE architecture, with suitable diagram.
(b) Write short notes on the following, giving suitable example for each :
(i) Perception Learning Rule
(ii) Widrow-Hoff (LMS) Learning Rule
6. (a) Briefly discuss about McCulloch-Pitts Neuron. Implement NAND function using McCulloch-Pitts neuron, for binary data representation given below :

Input | x_{1} | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| | x_{2} | 0 | 1 | 0 |

(b) Consider a 5-bit chromosome '10011'. List all the schemas. Find the length and order of each of the schemas.
7. State whether the following statements are True or False. Justify your answer.
(a) A multilayer network with linear transfer function is equivalent to a single-layer network.
(b) The length of chromosomes to determine the maximum value of the set S

$$
\mathrm{S}=\{\mathrm{x} \mid 0 \leq \mathrm{x} \leq 4096\} \text { is } 12 .
$$

(c) Hopfield network is a particular case of Kohonen network.
(d) Back propagation reduces to the LMS algorithm for a single-layer linear network (ADALINE).
(e) In Radial Basis Function (RBF) network, the neurons belonging to the same layer send their output to the neurons of the next and previous layers.

