M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination

December, 2022

MMTE-005 : CODING THEORY

Time :	2 hours	Ma	Maximum Marks : 50				
Note :							
(i)	Answer any fou no. 1 to 5.	r questions	from	questions			
(ii)	Question no. 6 is compulsory.						
(iii)	All questions carry equal marks.						

(iv)	Use of	calculator	• is not	allowed.
------	--------	------------	----------	----------

1.	(a)	Define the weight of a binary code. Give an			
		example of a binary linear code with			
		minimum weight 3.	2		
	(b)	State the sphere packing bound carefully			
		explaining all the terms in the bound.	2		

(c) Define a primitive element in a finite field. Find all the primitive elements in \mathbb{F}_7 .

MMTE-005

P.T.O.

3

- (d) Define a cyclic code and give an example. Write down the parity check matrix of the cyclic code of length 4 with generator matrix $x^2 + x + 1$.
- 2. (a) For a linear code, define the syndrome of a message. Find the syndrome of the message (1, 1, 0, 1) if a parity check matrix of the binary code is $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$. 3
 - (b) Define a self-dual code and give an example. 3
 - (c) Check whether the polynomial $x^3 x + 3$ is irreducible over \mathbb{F}_5 . 2
 - (d) Define a convolutional code.
- **3.** (a) Find all the codewords of the code \mathcal{C} with generator matrix

$\lceil 1 \rceil$	0	0	1	1
1 0 0	1	0	0	1.
0	0	1	1	0

How many errors can it detect ? How many errors can it correct ?

(b) Construct the addition table of a field with 8 elements.

MMTE-005

2

6

4

2

3

4. (a) Let \mathcal{C} be [15, 7] narrow sense binary BCH code of designed distance $\delta = 5$ which has a defining set $T = \{1, 2, 3, 4, 6, 8, 9, 12\}$. Let $\alpha^4 = 1 + \alpha$, where α is a primitive 15th root of unity, and generator polynomial \mathcal{C} is $g(x) = 1 + x^4 + x^6 + x^7 + x^8$. If $y(x) = 1 + x + x^5 + x^6 + x^9 + x^{10}$ is

If $y(x) = 1 + x + x^2 + x^2 + x^2 + x^{-1}$ is received, find the transmitted codeword. You may find the following table useful.

0000	0	1000	α^3	1011	α^7	1110	α^{11}
0001	1	0011	α^4	0101	α^8	1111	α^{12}
0010	α	0110	α^5	1010	α^9	1101	α^{13}
0100	α^2	1100	α^6	0111	α^{10}	1001	α^{14}

$$\alpha^4 = 1 + \alpha$$

- (b) Prove that in a linear code, the minimum distance is the same as the minimum weight.
- (c) Prove that a BCH code with designed distance δ has minimum weight at least δ .
- 5. (a) Let C be a cyclic code over \mathbb{F}_q with generating idempotent e(x). Prove that the generator polynomial of C is $g(x) = gcd(e(x), x^n - 1)$ computed in $\mathbb{F}_q[x]$.
 - (b) Let \mathcal{C} be any self-dual [12, 6, 6] ternary code. Prove that the weight enumerator of \mathcal{C} is $W_C(x, y) = y^{12} + 264 x^6 y^6 + 440 x^9 y^3 + 24 x^{12} 5$

3

MMTE-005

5

 \mathcal{B}

 $\mathbf{2}$

5

- 6. Which of the following statements are *True* and which are *False* ? Justify your answer with a short proof or a counter example. $5 \times 2=10$
 - $(a) \qquad 5^{10}\equiv 1 \ (mod \ 10)$
 - (b) If C is an (n, k)-code with parity check matrix P, then any two words x, y ∈ C have the same syndrome only if x = y.
 - (c) If x and y are two codewords in an LDPC code, with distance between them being less than 1, then x and y will differ in only one component.
 - (d) The dimension of a code \mathcal{C} is the same as the dimension of the dual code of \mathcal{C} .
 - (e) The number of errors a code C can correct is the same as the minimum distance of C.