M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 December, 2022

MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50
Note :
(i) Answer any four questions from questions no. 1 to 5.
(ii) Question no. 6 is compulsory.
(iii) All questions carry equal marks.
(iv) Use of calculator is not allowed.

1. (a) Define the weight of a binary code. Give an example of a binary linear code with minimum weight 3 .
(b) State the sphere packing bound carefully explaining all the terms in the bound.
(c) Define a primitive element in a finite field. Find all the primitive elements in \mathbb{F}_{7}.
(d) Define a cyclic code and give an example. Write down the parity check matrix of the cyclic code of length 4 with generator matrix $x^{2}+x+1$.
2. (a) For a linear code, define the syndrome of a message. Find the syndrome of the message $(1,1,0,1)$ if a parity check matrix of the binary code is $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
(b) Define a self-dual code and give an example.
(c) Check whether the polynomial $\mathrm{x}^{3}-\mathrm{x}+3$ is irreducible over \mathbb{F}_{5}.
(d) Define a convolutional code.
3. (a) Find all the codewords of the code ζ with generator matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] .
$$

How many errors can it detect ? How many errors can it correct?
(b) Construct the addition table of a field with 8 elements.
4. (a) Let \mathcal{C} be [15, 7] narrow sense binary BCH code of designed distance $\delta=5$ which has a defining set $\mathrm{T}=\{1,2,3,4,6,8,9,12\}$.
Let $\alpha^{4}=1+\alpha$, where α is a primitive $15^{\text {th }}$ root of unity, and generator polynomial ζ is $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$.
If $y(x)=1+x+x^{5}+x^{6}+x^{9}+x^{10}$ is received, find the transmitted codeword. You may find the following table useful.

0000	0	1000	α^{3}	1011	α^{7}	1110	α^{11}
0001	1	0011	α^{4}	0101	α^{8}	1111	α^{12}
0010	α	0110	α^{5}	1010	α^{9}	1101	α^{13}
0100	α^{2}	1100	α^{6}	0111	α^{10}	1001	α^{14}

$$
\alpha^{4}=1+\alpha
$$

(b) Prove that in a linear code, the minimum distance is the same as the minimum weight.
(c) Prove that a BCH code with designed distance δ has minimum weight at least δ.
5. (a) Let \smile be a cyclic code over \mathbb{F}_{q} with generating idempotent $\mathrm{e}(\mathrm{x})$. Prove that the generator polynomial of \mathcal{C} is $\mathrm{g}(\mathrm{x})=\operatorname{gcd}\left(\mathrm{e}(\mathrm{x}), \mathrm{x}^{\mathrm{n}}-1\right)$ computed in $\mathbb{F}_{\mathrm{q}}[\mathrm{x}]$.
(b) Let \mathcal{C} be any self-dual $[12,6,6]$ ternary code.

Prove that the weight enumerator of \mathcal{C} is

$$
\mathrm{W}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\mathrm{y}^{12}+264 \mathrm{x}^{6} \mathrm{y}^{6}+440 \mathrm{x}^{9} \mathrm{y}^{3}+24 \mathrm{x}^{12} \quad 5
$$

6. Which of the following statements are True and which are False ? Justify your answer with a short proof or a counter example. $5 \times 2=10$
(a) $5^{10} \equiv 1(\bmod 10)$
(b) If C is an (n, k)-code with parity check matrix P, then any two words $x, y \in \zeta$ have the same syndrome only if $x=y$.
(c) If x and y are two codewords in an LDPC code, with distance between them being less than 1 , then x and y will differ in only one component.
(d) The dimension of a code ζ is the same as the dimension of the dual code of ζ.
(e) The number of errors a code τ can correct is the same as the minimum distance of \mathscr{C}.
