M. SC. (MATHEMATICS WITH COMPUTER SCIENCE)
 [M. SC. (MACS)]
 Term-End Examination
 December, 2022 MMTE-006 : CRYPTOGRAPHY

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 6 is compulsory.
(ii) Answer any four questions from Question Nos. 1 to 5.

1. (a) Define the characteristic of a field. What is the characteristic of \mathbf{F}_{27} ? 2
(b) Define the Euler ϕ-function. Find ϕ (72). 2
(c) Describe 'known-plaintext attack'. How is it different from chosen-plaintext attack ? 3
(d) What is the length of the key in DES ? How long is the actual key? What are the extra bits used for?
2. (a) Define a pseudo-random bit generator. When do we say that a pseudo-random bit generator passes all polynomial time statistical tests?
(b) Define a cryptographic hash function, stating its properties.
(c) What is the discrete logarithm of a nonzero element in a finite field with respect a primitive element ? Taking 2 as the primitive element, find the discrete logarithm of 5 with respecto to 2 . 2
(d) How does use of OAEP strengthen the RSA cryptosystem?
3. (a) Factorise $x^{2}-9$ into irreducible factors in $\mathbf{F}_{11}[x]$.
(b) Explain the RC4 algorithm with pseudocode. 5
4. (a) Suppose Bob sets up the parameters for the Elhamal cryptosystem as follows :

He chooses the prime $p=29$ and primitive root 2 . He chooses $x=7$ and publishes the values (29, 2, 12). He receives the message $(12,15)$ from Alice. Decrypt the message. 5
(b) Let $f(x)=x^{4}+x^{3}+x^{2}+1 \in \mathbf{F}_{2}[x]$ and $g(x)=x^{3}+1 \in \mathbf{F}_{2}[x]$. Find g.c.d. (f, g) using the extended Euclidean algorithm and express the g.c.d. in the form $u(x) f(x)+v(x) g(x)$.
5. (a) Use Fermat factorization method to factorise 71273 . 5
(b) Use the simple columnar transposition cipher with column width 4 to encrypt the text 'ATTACK FROM THE PAVILION END'.
(c) Explain the Davis-Meyer method for constructing a one-way compression function from a block cipher.
6. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter example : $\quad 5 \times 2=10$
(a) $35^{6} \equiv 1(\bmod 37)$.
(b) \mathbf{F}_{11}^{*} is a cyclic group.
(c) Vigenere cipher is a transposition cipher.
(d) The powers 2 modulo p are strictly increasing for any p.
(e) In an RSA system with modulus n, finding the factors of n is equivalent to finding $\phi(n)$.

