M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)
 Term-End Examination
 December, 2022
 MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 Hours
Maximum Marks : 50

Note : Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed. Symbols used have their usual meaning.

1. (a) What is histogram equalization ? Does discrete histogram equalization, yield a uniform histogram ? Justify your answer. 4
(b) Briefly discuss Discrete Fourier Transform (DFT). Apply DFT to the following sequence ' x ' and verify whether it works : 6

$$
x=\{1,2,8,9\}
$$

2. (a) How Bayesian classifier performs classification ? Discuss. Apply the Bayesian classifier on the following dataset, and predict the class of $(2,2): \quad 6$

a_{1}	a_{2}	Class (i)
2	0	C_{1}
0	2	C_{1}
2	4	C_{2}
0	2	C_{2}
3	2	C_{2}

(b) What are Median filters ? Compute the median value of the pixel circled below, using the 3×3 mask $\left[\begin{array}{ccc}1 & 5 & 7 \\ 2 & 4 & 6 \\ 3 & 2 & 1\end{array}\right]$.
3. (a) Write formula for MSE, SNR and PSNR, use them to compute MSE, SNR and PSNR for the 8 bit reference image given below : 6

$$
\begin{aligned}
f(x, y) & =\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 2 & 1 \\
3 & 2 & 2
\end{array}\right] \\
\text { and } \quad \hat{f}(x, y) & =\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

(b) Give two similarities and two differences between spatial convolution and spatial correlation. 4
4. (a) Compare Weiner filtering with inverse filtering. Give limitations of Inverse filtering and describe how Weiner filter overcome the identified limitations of inverse filtering. 4
(b) What is 'Huffman Coding' ? Calculate the number of bits required to code the data given below, by using Huffman coding : 6

Symbol	Frequency
a	21
b	16
c	15
d	18
e	32
f	8

P.T. O.
5. (a) State whether the following statements are true or false. Give reason for your answer :

4
(i) 2-D Gaussian operator is separable
(ii) Laplacian of a Gaussian operator is non-separable
(b) What is Radon transformation ? Show that the Radon transform of Gaussian shape $f(x, y)=\mathrm{A} e^{-\left(x^{2}+y^{2}\right)}$ is $g(\rho, \theta)=\mathrm{A} \sqrt{\pi} e^{-\rho^{2}}$. 6
6. (a) Distinguish between the decision-theoretic approach and the structural approach of Pattern recognition. Give suitable example for each.
(b) What is KL transform ? Compute the KL transform for the input data:

$$
\begin{aligned}
& \mathrm{X}_{1}=(4,4,5)^{\mathrm{T}} \\
\mathrm{X}_{2} & =(3,2,5)^{\mathrm{T}} \\
\mathrm{X}_{3} & =(5,7,6)^{\mathrm{T}} \\
\text { and } \quad & \mathrm{X}_{4}
\end{aligned}=(6,7,7)^{\mathrm{T}} .
$$

7. (a) What is digital image watermarking ? Draw and discuss block diagram for embedding and extraction of a digital image watermark.
(b) Consider the following five training sets as shown below :

4

S. No.	Inputs		Output
	I_{1}	I_{2}	0
1	0.4	-0.7	0.1
2	0.3	-0.5	0.05
3	0.6	0.1	0.3
4	0.2	0.4	0.25
5	0.1	-0.2	0.12

(i) Draw the neural network architecture.
(ii) Obtain the updated weights, error and training set for second iteration.

